Recent Advances (2012-2015) in the Photocatalytic Conversion of Carbon Dioxide to Fuels Using Solar Energy: Feasibilty for a New Energy

被引:36
作者
Izumi, Yasuo [1 ]
机构
[1] Chiba Univ, Dept Chem, Grad Sch Sci, Inage Ku, Yayoi 1-33, Chiba 2638522, Japan
来源
ADVANCES IN CO2 CAPTURE, SEQUESTRATION, AND CONVERSION | 2015年 / 1194卷
关键词
ENHANCED CO2 PHOTOREDUCTION; HIGH-YIELD SYNTHESIS; IN-SITU SYNTHESIS; GRAPHENE OXIDE; EFFICIENT PHOTOCATALYST; ELECTRONIC-STRUCTURE; ANATASE TIO2; REDUCTION; WATER; METHANE;
D O I
10.1021/bk-2015-1194.ch001
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this chapter, recent advances in photocatalytic CO2 conversion with water and/or other reductants are reviewed for the publications between 2012 and 2015. Quantitative comparisons were made for the reaction rates in umol h(-1) g(cat)(-1) to acertain the progress of this field although the rates depends on photocatalyst conditions and reaction conditions (temperature, pressure, and photon wavelength and flux). TiO2 photoproduced methane or CO from CO2 and water at rates of 0.1-17 mol h(-1) gcat(-1) depending on the crystalline phase, crystalline face, and the defects. By depositing as minimal thin TiO2 film, the rates increased to 50-240 mu mol h(-1) Gaseous water was preferred rather than liquid water for methane/CO formation as compared to water photoreduction to H-2 Pt, Pd, Au, Rh, Ag, Ni, Cu, Au3Cu alloy, I, MgO, RuO2, graphene, g-C3N4, Cu-containing dyes, and Cu -containing metal-organic frameworks (MOFs) were effective to assist the CO2 photoreduction using TiO2 to methane (or CO, methanol, ethane) at rates of 1.4-160 limol h-Igcat.Metals of greater work function were preferred. By depositingi as minimal thin photocatalyst film, the rates increased to 32-2200 limot h -I gcat-I. The importance of crystal face of TiO2 nanofiber was suggested. As for semiconductors other than TiO2, ZnO, Zn6Ti layered double hydroxide (LDH), Mg3In LDH, KTaO3, In(OH)(3), graphene, graphene oxide, g-C3N4, CoTe, ZnO, ZnTe, SrTiO3, ZnGa2O4, ZnzGeO(4), Zr Co Ir oxides, Nb2O5, HNbO3, NaNbO3, InNbO4, NiO, Co3O4, Cu2O, AgBr, carbon nanotube, and the composites of these were reported to form methane, CO, methanol, acetaldehyde from CO2 and water at rates of 0.15-300 mot h(-1) g(cat)(-1) that were comparable to rates using promoted TiO2. The band energy designs comprising appropriate conduction band for CO2 reduction and valence band for water oxidation were made progresses in these semiconductors and semiconductor junctions in the three years. If H-2 was used as a reductant, Ni/SiO2-Al2O3 formed methane at 423 K under pressurized CO2 + H-2 at a rate of 55 mmol h(-1) g(cat)(-1). This rate was not enabled by heating the system under dark, suggesting photoactivated reaction followed by thermally-assisted reaction(s) via Ni H species. As pure photocatalytic reactions from CO2 + Hz, methanol formation rates were improved up to 0.30 umol h-' goat' by the doping of Ag/Au nanoparticles, [Cu(OH)(4)](2-) anions, and Cu -containing dyes to Zn Ga LDH. Furthermore, sacrificial reductants, e.g. hydrazine, Na2SO3, methanol, triethanol amine, and triethyamine, were also utilized to form CO, formate, and methanol at rates of 20-2400 p.mol h(-1) g(cat)(-1) using semiconductor or MOF photocatalysts. Finally, similar to the integrated system of semiconductor photocatalyst for water oxidation and metal complex/enzyme catalyst for CO2 (photo)reduction, two semiconductors (WO3, Zn Cu Ga LDH) were combined on both side of proton-conducting polymer to form methanol at a rate of 0. 05 limo] h(-1) g(cat)(-1) from CO2 and moisture. These promotion of photoconversion rates of CO2 and new photocatalysts found in these three years have indicated the way beyond for a new energy.
引用
收藏
页码:1 / 46
页数:46
相关论文
共 90 条
  • [1] Visible-light-harvesting reduction of CO2 to chemical fuels with plasmonic Ag@AgBr/CNT nanocomposites
    Abou Asi, Mudar
    Zhu, Linfei
    He, Chun
    Sharma, Virender K.
    Shu, Dong
    Li, Shuzhen
    Yang, Jiannan
    Xiong, Ya
    [J]. CATALYSIS TODAY, 2013, 216 : 268 - 275
  • [2] Photocatalytic conversion of carbon dioxide into methanol using optimized layered double hydroxide catalysts
    Ahmed, Naveed
    Morikawa, Motoharu
    Izumi, Yasuo
    [J]. CATALYSIS TODAY, 2012, 185 (01) : 263 - 269
  • [3] Photocatalytic conversion of carbon dioxide into methanol using zinc-copper-M(III) (M = aluminum, gallium) layered double hydroxides
    Ahmed, Naveed
    Shibata, Yoshiyuki
    Taniguchi, Tatsuo
    Izumi, Yasuo
    [J]. JOURNAL OF CATALYSIS, 2011, 279 (01) : 123 - 135
  • [4] Cu2O/Reduced Graphene Oxide Composites for the Photocatalytic Conversion of CO2
    An, Xiaoqiang
    Li, Kimfung
    Tang, Junwang
    [J]. CHEMSUSCHEM, 2014, 7 (04) : 1086 - 1093
  • [5] Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: Effects of the structure of the active sites and the addition of Pt
    Anpo, M
    Yamashita, H
    Ichihashi, Y
    Fujii, Y
    Honda, M
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (14): : 2632 - 2636
  • [6] Catalysis for the Valorization of Exhaust Carbon: from CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2
    Aresta, Michele
    Dibenedetto, Angela
    Angelini, Antonella
    [J]. CHEMICAL REVIEWS, 2014, 114 (03) : 1709 - 1742
  • [7] ELECTROCHEMICAL MEASUREMENTS ON THE PHOTO-ELECTROCHEMICAL REDUCTION OF AQUEOUS CARBON-DIOXIDE ON PARA-GALLIUM PHOSPHIDE AND PARA-GALLIUM ARSENIDE SEMICONDUCTOR ELECTRODES
    AURIANBLAJENI, B
    HALMANN, M
    MANASSEN, J
    [J]. SOLAR ENERGY MATERIALS, 1983, 8 (04): : 425 - 440
  • [8] Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement
    Blankenship, Robert E.
    Tiede, David M.
    Barber, James
    Brudvig, Gary W.
    Fleming, Graham
    Ghirardi, Maria
    Gunner, M. R.
    Junge, Wolfgang
    Kramer, David M.
    Melis, Anastasios
    Moore, Thomas A.
    Moser, Christopher C.
    Nocera, Daniel G.
    Nozik, Arthur J.
    Ort, Donald R.
    Parson, William W.
    Prince, Roger C.
    Sayre, Richard T.
    [J]. SCIENCE, 2011, 332 (6031) : 805 - 809
  • [9] Solar photoproduction of hydrogen: A review
    Bolton, JR
    [J]. SOLAR ENERGY, 1996, 57 (01) : 37 - 50
  • [10] REDUCTION OF CARBON-DIOXIDE TO METHANOL ON N-GAAS AND P-GAAS AND P-INP - EFFECT OF CRYSTAL-FACE, ELECTROLYTE AND CURRENT-DENSITY
    CANFIELD, D
    FRESE, KW
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1983, 130 (08) : 1772 - 1773