Model Uncertainty and Robustness: A Computational Framework for Multimodel Analysis

被引:150
作者
Young, Cristobal [1 ]
Holsteen, Katherine [2 ]
机构
[1] Stanford Univ, Dept Sociol, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Epidemiol & Clin Res, Stanford, CA 94305 USA
关键词
model uncertainty; model dependence; computational methods; robust; multimodel analysis; OMITTED VARIABLE BIAS; PHANTOM MENACE; STATE; DETERMINANTS; REGRESSION; MIGRATION; SELECTION; TAXATION; GROWTH;
D O I
10.1177/0049124115610347
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Model uncertainty is pervasive in social science. A key question is how robust empirical results are to sensible changes in model specification. We present a new approach and applied statistical software for computational multimodel analysis. Our approach proceeds in two steps: First, we estimate the modeling distribution of estimates across all combinations of possible controls as well as specified functional form issues, variable definitions, standard error calculations, and estimation commands. This allows analysts to present their core, preferred estimate in the context of a distribution of plausible estimates. Second, we develop a model influence analysis showing how each model ingredient affects the coefficient of interest. This shows which model assumptions, if any, are critical to obtaining an empirical result. We demonstrate the architecture and interpretation of multimodel analysis using data on the union wage premium, gender dynamics inmortgage lending, and tax flightmigration among U.S. states. These illustrate how initial results can be strongly robust to alternative model specifications or remarkably dependent on a knife-edge specification.
引用
收藏
页码:3 / 40
页数:38
相关论文
共 56 条
[1]   Instrumental variables and the search for identification: From supply and demand to natural experiments [J].
Angrist, JD ;
Krueger, AB .
JOURNAL OF ECONOMIC PERSPECTIVES, 2001, 15 (04) :69-85
[2]  
[Anonymous], 1993, An introduction to the bootstrap
[3]  
[Anonymous], 1999, AER781 USDA EC RES S
[4]  
[Anonymous], 2008, MODERN METHODS ROBUS
[5]   Raise standards for preclinical cancer research [J].
Begley, C. Glenn ;
Ellis, Lee M. .
NATURE, 2012, 483 (7391) :531-533
[6]   Statistical Inference After Model Selection [J].
Berk, Richard ;
Brown, Lawrence ;
Zhao, Linda .
JOURNAL OF QUANTITATIVE CRIMINOLOGY, 2010, 26 (02) :217-236
[7]   Economic globalization and the welfare state in affluent democracies, 1975-2001 [J].
Brady, D ;
Beckfield, J ;
Seeleib-Kaiser, M .
AMERICAN SOCIOLOGICAL REVIEW, 2005, 70 (06) :921-948
[8]   Regression and matching estimates of the effects of elite college attendance on educational and career achievement [J].
Brand, Jennie E. ;
Halaby, Charles N. .
SOCIAL SCIENCE RESEARCH, 2006, 35 (03) :749-770
[9]   Most Reported Genetic Associations With General Intelligence Are Probably False Positives [J].
Chabris, Christopher F. ;
Hebert, Benjamin M. ;
Benjamin, Daniel J. ;
Beauchamp, Jonathan ;
Cesarini, David ;
van der Loos, Matthijs ;
Johannesson, Magnus ;
Magnusson, Patrik K. E. ;
Lichtenstein, Paul ;
Atwood, Craig S. ;
Freese, Jeremy ;
Hauser, Taissa S. ;
Hauser, Robert M. ;
Christakis, Nicholas ;
Laibson, David .
PSYCHOLOGICAL SCIENCE, 2012, 23 (11) :1314-1323
[10]   Determinants of Economic Growth: Will Data Tell? [J].
Ciccone, Antonio ;
Jarocinski, Marek .
AMERICAN ECONOMIC JOURNAL-MACROECONOMICS, 2010, 2 (04) :222-246