Did the peridinin plastid evolve through tertiary endosymbiosis? A hypothesis

被引:31
作者
Bodyl, Andrzej [1 ]
Moszczynski, Krzysztof [1 ]
机构
[1] Univ Wroclaw, Dept Biodivers & Evolut Taxon, Inst Zool, PL-54148 Wroclaw, Poland
关键词
apicoplast; chromalveolates; endosymbiosis; dinoflagellates; glyceraldehyde-3-phosphate dehydrogenase; plastids; protein targeting;
D O I
10.1080/09670260600961080
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Most photosynthetic dinoflagellates harbour the peridinin plastid. This plastid is surrounded by three membranes and its characteristic pigments are chlorophyll c and the carotenoid peridinin. The evolutionary origin of this peculiar plastid remains controversial and is hotly debated. On the recently published tree of concatenated plastid-encoded proteins, dinoflagellates emerge from within the Chromista (clade containing cryptophytes, heterokonts, and haptophytes) and cluster specifically with Heterokonta. These data inspired a new version of the 'chromalveolate' model, according to which the peridinin plastid evolved by 'descent with modification' from a heterokont-like plastid that had been acquired from a rhodophyte by an ancestral chromalveolate. However, this model of plastid evolution encounters serious obstacles. Firstly, the heterokont plastid is surrounded by four membranes, which means that the ancestral peridinin plastid must have lost one of these primary membranes. However, such a loss could be traumatic, because it could potentially disturb protein import into and/or within the plastid. Secondly, on the phylogenetic tree of Dinoflagellata and Heterokonta, the first to diverge are not plastid, but heterotrophic, aplastidal taxa. Thus, when accepting the single origin of the heterokont and peridinin plastids, we would have to postulate multiple plastid losses, but such a scenario is highly doubtful when the numerous non-photosynthetic functions of plastids and their existence in heterotrophic protists, including parasitic lineages, are considered. Taking these obstacles into account, we suggest an alternative interpretation of the concatenated tree of plastid-encoded proteins. According to our hypothesis, the peridinin plastid evolved from a heterokont alga through tertiary endosymbiosis.
引用
收藏
页码:435 / 448
页数:14
相关论文
共 108 条
[1]   In vivo characterization of diatom multipartite plastid targeting signals [J].
Apt, KE ;
Zaslavkaia, L ;
Lippmeier, JC ;
Lang, M ;
Kilian, O ;
Wetherbee, R ;
Grossman, AR ;
Kroth, PG .
JOURNAL OF CELL SCIENCE, 2002, 115 (21) :4061-4069
[2]   The genome of the diatom Thalassiosira pseudonana:: Ecology, evolution, and metabolism [J].
Armbrust, EV ;
Berges, JA ;
Bowler, C ;
Green, BR ;
Martinez, D ;
Putnam, NH ;
Zhou, SG ;
Allen, AE ;
Apt, KE ;
Bechner, M ;
Brzezinski, MA ;
Chaal, BK ;
Chiovitti, A ;
Davis, AK ;
Demarest, MS ;
Detter, JC ;
Glavina, T ;
Goodstein, D ;
Hadi, MZ ;
Hellsten, U ;
Hildebrand, M ;
Jenkins, BD ;
Jurka, J ;
Kapitonov, VV ;
Kröger, N ;
Lau, WWY ;
Lane, TW ;
Larimer, FW ;
Lippmeier, JC ;
Lucas, S ;
Medina, M ;
Montsant, A ;
Obornik, M ;
Parker, MS ;
Palenik, B ;
Pazour, GJ ;
Richardson, PM ;
Rynearson, TA ;
Saito, MA ;
Schwartz, DC ;
Thamatrakoln, K ;
Valentin, K ;
Vardi, A ;
Wilkerson, FP ;
Rokhsar, DS .
SCIENCE, 2004, 306 (5693) :79-86
[3]   Chlorophyll c-containing plastid relationships based on analyses of a multigene data set with all four chromalveolate lineages [J].
Bachvaroff, TR ;
Puerta, MVS ;
Delwiche, CF .
MOLECULAR BIOLOGY AND EVOLUTION, 2005, 22 (09) :1772-1782
[4]   Dinoflagellate expressed indicate massive transfer to the nuclear genome sequence tag data of chloroplast genes [J].
Bachvaroff, TR ;
Concepcion, GT ;
Rogers, CR ;
Herman, EM ;
Delwiche, CF .
PROTIST, 2004, 155 (01) :65-78
[5]  
BELCHER J H, 1976, Archiv fuer Protistenkunde, V118, P215
[6]   Phylogenetic relationships among algae based on complete large-subunit rRNA sequences [J].
Ben Ali, A ;
De Baere, R ;
Van der Auwera, G ;
De Wachter, R ;
Van de Peer, Y .
INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2001, 51 :737-749
[7]   Do plastid-related characters support the chromalveolate hypothesis? [J].
Bodyl, A .
JOURNAL OF PHYCOLOGY, 2005, 41 (03) :712-719
[8]   Evolutionary origin of a preprotein translocase in the periplastid membrane of complex plastids: a hypothesis [J].
Bodyl, A .
PLANT BIOLOGY, 2004, 6 (05) :513-518
[9]   Multiple metabolic roles for the nonphotosynthetic plastid of the green alga Prototheca wickerhamii [J].
Borza, T ;
Popescu, CE ;
Lee, RW .
EUKARYOTIC CELL, 2005, 4 (02) :253-261
[10]   Photosynthetic evolution in parasitic plants: insight from the chloroplast genome [J].
Bungard, RA .
BIOESSAYS, 2004, 26 (03) :235-247