Flow Separation and Increased Drag Coefficient in Estuarine Channels With Curvature

被引:17
作者
Bo, Tong [1 ,2 ]
Ralston, David K. [2 ]
机构
[1] MIT, WHOI Joint Program, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Woods Hole Oceanog Inst, Appl Ocean Phys & Engn Dept, Woods Hole, MA 02543 USA
关键词
SECONDARY CIRCULATION; LATERAL CIRCULATION; TIDAL CHANNEL; ISLAND WAKES; FORM DRAG; TURBULENCE; BEND; SHALLOW; RIVER; DISSIPATION;
D O I
10.1029/2020JC016267
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
Flow separation has been observed and studied in sinuous laboratory channels and natural meanders, but the effects of flow separation on along-channel drag are not well understood. Motivated by observations of large drag coefficients from a shallow, sinuous estuary, we built idealized numerical models representative of that system. We found that flow separation in tidal channels with curvature can create form drag that increases the total drag to more than twice that from bottom friction alone. In the momentum budget, the pressure gradient is balanced by the combined effects of bottom friction and form drag, which is calculated directly. The effective increase in total drag coefficient depends on two geometric parameters: dimensionless water depth and bend sharpness, quantified as the bend radius of curvature to channel width ratio. We introduce a theoretical boundary layer separation model to explain this parameter dependence and to predict flow separation and the increased drag. The drag coefficient can increase by a factor of 2-7 in "sharp" and "deep" sinuous channels where flow separation is most likely. Flow separation also enhances energy dissipation due to increased velocities in bends, resulting in greater loss of tidal energy and weakened stratification. Flow separation and the associated drag increase are expected to be more common in meanders of tidal channels than rivers where point bars that inhibit flow separation are more commonly found. The increased drag due to flow separation reduces tidal amplitude and affects velocity phasing along the estuary and could result in morphological feedbacks. Key Points Flow separation can create a form drag in sinuous estuarine channels, and the drag coefficient can therefore be increased by a factor of 2-7 The increased drag affects tidal propagation, leading to a larger-amplitude decay and greater phase lag in tidal meanders The increased drag coefficient depends on two geometric parameters-dimensionless water depth and bend sharpness
引用
收藏
页数:25
相关论文
empty
未找到相关数据