Reversal of turbulent gyroBohm isotope scaling due to nonadiabatic electron drive

被引:24
作者
Belli, E. A. [1 ]
Candy, J. [1 ]
Waltz, R. E. [1 ]
机构
[1] Gen Atom, POB 85608, San Diego, CA 92186 USA
关键词
FLUID EQUATIONS; H-MODE; CONFINEMENT; DEPENDENCE;
D O I
10.1063/1.5110401
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The influence of kinetic electrons on the isotope scaling of gyrokinetic turbulent energy flux is assessed. A simple framework is used to study the transition from ion-dominated turbulence regimes to regimes where electron and ion transport levels are comparable. In the ion-dominated regime, the turbulent ion energy flux increases as the ion mass increases, in agreement with simple gyroBohm scaling arguments. Conversely, in the latter regime for which the influence of electrons is significant, a strong reversal of the gyroBohm scaling is observed which cannot be captured by mixing length estimates. In this reversed regime, the turbulent ion energy flux decreases as ion mass increases. The reversal is controlled by the finite electron-to-ion mass-ratio dependence of the nonadiabatic electron response. This mass-ratio dependence is dominated by the parallel motion terms in the electron gyrokinetic equation and provides a correction to the bounce-averaged-electron limit which is independent of the mass ratio. The finite-mass correction is larger for light ions and explains the observed gyroBohm reversal for hydrogen plasmas. An implication is that isotope scaling may not be properly described by simplified fluid or bounce-averaged electron equations. Published under license by AIP Publishing.
引用
收藏
页数:9
相关论文
共 40 条
[11]   Microturbulence study of the isotope effect [J].
Bustos, A. ;
Navarro, A. Banon ;
Goerler, T. ;
Jenko, F. ;
Hidalgo, C. .
PHYSICS OF PLASMAS, 2015, 22 (01)
[12]   Spectral treatment of gyrokinetic shear flow [J].
Candy, J. ;
Belli, E. A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 356 :448-457
[13]   A high-accuracy Euleriangyrokinetic solver for collisional plasmas [J].
Candy, J. ;
Belli, E. A. ;
Bravenec, R. V. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 324 :73-93
[14]   An Eulerian gyrokinetic-Maxwell solver [J].
Candy, J ;
Waltz, RE .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 186 (02) :545-581
[15]   A gyrokinetic ion zero electron inertia fluid electron model for turbulence simulations [J].
Chen, Y ;
Parker, S .
PHYSICS OF PLASMAS, 2001, 8 (02) :441-446
[16]   THEORY OF UBIQUITOUS MODE [J].
COPPI, B ;
PEGORARO, F .
NUCLEAR FUSION, 1977, 17 (05) :969-993
[17]   Plasma confinement in JET H mode plasmas with H, D, DT and T isotopes [J].
Cordey, JG ;
Balet, B ;
Barlett, DV ;
Budny, RV ;
Christiansen, JP ;
Conway, GD ;
Eriksson, LG ;
Fishpool, GM ;
Gowers, CW ;
de Haas, JCM ;
Harbour, PJ ;
Horton, LD ;
Howman, AC ;
Jacquinot, J ;
Kerner, W ;
Lowry, CG ;
Monk, RD ;
Nielsen, P ;
Righi, E ;
Rimini, FG ;
Saibene, G ;
Sartori, R ;
Schunke, B ;
Sips, ACC ;
Smith, RJ ;
Stamp, MF ;
Start, DFH ;
Thomsen, K ;
Tubbing, BJD ;
von Hellermann, MG .
NUCLEAR FUSION, 1999, 39 (03) :301-308
[18]   ISOTOPE SCALING AND ETA-I MODE WITH IMPURITIES IN TOKAMAK PLASMAS [J].
DONG, JQ ;
HORTON, W ;
DORLAND, W .
PHYSICS OF PLASMAS, 1994, 1 (11) :3635-3640
[19]   Gyrokinetic simulations of ion and impurity transport [J].
Estrada-Mila, C ;
Candy, J ;
Waltz, RE .
PHYSICS OF PLASMAS, 2005, 12 (02) :022305-1
[20]   A NONLINEAR BOUNCE-KINETIC EQUATION FOR TRAPPED ELECTRONS [J].
GANG, FY ;
DIAMOND, PH .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1990, 2 (12) :2976-2985