Reinsurance arrangements maximizing insurer's survival probability

被引:40
作者
Gajek, L
Zagrodny, D
机构
[1] Tech Univ Lodz, Math Inst, PL-93005 Lodz, Poland
[2] Cardinal Stefan Wyszynski Univ, Fac Math, PL-01815 Warsaw, Poland
关键词
D O I
10.1111/j.0022-4367.2004.00097.x
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
The article concerns the problem of purchasing a reinsurance policy that maximizes the survival probability of the insurer. Explicit forms of the contracts optimal for the insurer are derived which are stop loss or truncated stop loss depending on the initial surplus, a quota to be spend on reinsurance and pricing rules of both the insurer and the reinsurer.
引用
收藏
页码:421 / 435
页数:15
相关论文
共 14 条
[1]  
AMSLER MH, 1993, B SWISS ASS ACTUARIE, V91, P33
[2]   ALTERNATIVE APPROACHES TO THE THEORY OF CHOICE IN RISK-TAKING SITUATIONS [J].
Arrow, Kenneth J. .
ECONOMETRICA, 1951, 19 (04) :404-437
[3]  
ARROW KJ, 1963, AM ECON REV, V53, P941
[4]  
Buhlmann H., 1970, MATH METHODS RISK TH
[5]  
Daykin C.D., 1993, Practical risk theory for actuaries
[6]   Insurer's optimal reinsurance strategies [J].
Gajek, L ;
Zagrodny, D .
INSURANCE MATHEMATICS & ECONOMICS, 2000, 27 (01) :105-112
[7]   Optimal reinsurance under general risk measures [J].
Gajek, L ;
Zagrodny, D .
INSURANCE MATHEMATICS & ECONOMICS, 2004, 34 (02) :227-240
[8]   Optimal reinsurance under mean-variance premium principles [J].
Kaluszka, M .
INSURANCE MATHEMATICS & ECONOMICS, 2001, 28 (01) :61-67
[9]  
Kass R., 2001, MODERN ACTUARIAL RIS
[10]  
Klugman S.A., 1998, Loss models: From data to decisions