Wasserstein autoregressive models for density time series
被引:21
|
作者:
Zhang, Chao
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USA
Zhang, Chao
[1
]
Kokoszka, Piotr
论文数: 0引用数: 0
h-index: 0
机构:
Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USAUniv Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USA
Kokoszka, Piotr
[2
]
Petersen, Alexander
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USA
Brigham Young Univ, Dept Stat, Provo, UT 84602 USAUniv Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USA
Petersen, Alexander
[1
,3
]
机构:
[1] Univ Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USA
[2] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA
[3] Brigham Young Univ, Dept Stat, Provo, UT 84602 USA
Random densities;
Wasserstein metric;
time series;
distributional forecasting MOS subject classification;
STRICTLY STATIONARY SOLUTIONS;
INFERENCE;
SPACE;
D O I:
10.1111/jtsa.12590
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Data consisting of time-indexed distributions of cross-sectional or intraday returns have been extensively studied in finance, and provide one example in which the data atoms consist of serially dependent probability distributions. Motivated by such data, we propose an autoregressive model for density time series by exploiting the tangent space structure on the space of distributions that is induced by the Wasserstein metric. The densities themselves are not assumed to have any specific parametric form, leading to flexible forecasting of future unobserved densities. The main estimation targets in the order-p Wasserstein autoregressive model are Wasserstein autocorrelations and the vector-valued autoregressive parameter. We propose suitable estimators and establish their asymptotic normality, which is verified in a simulation study. The new order-p Wasserstein autoregressive model leads to a prediction algorithm, which includes a data driven order selection procedure. Its performance is compared to existing prediction procedures via application to four financial return data sets, where a variety of metrics are used to quantify forecasting accuracy. For most metrics, the proposed model outperforms existing methods in two of the data sets, while the best empirical performance in the other two data sets is attained by existing methods based on functional transformations of the densities.
机构:
Univ Michoacana, Fac Ingn Elect, Div Estudios Postgrado, Mexico City, DF, MexicoUniv Michoacana, Fac Ingn Elect, Div Estudios Postgrado, Mexico City, DF, Mexico
Graff, Mario
Jair Escalante, Hugo
论文数: 0引用数: 0
h-index: 0
机构:
Inst Nacl Astrofis Opt & Electr, Dept Comp Sci, Mexico City, DF, MexicoUniv Michoacana, Fac Ingn Elect, Div Estudios Postgrado, Mexico City, DF, Mexico
Jair Escalante, Hugo
Cerda-Jacobo, Jaime
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michoacana, Fac Ingn Elect, Div Estudios Postgrado, Mexico City, DF, MexicoUniv Michoacana, Fac Ingn Elect, Div Estudios Postgrado, Mexico City, DF, Mexico
Cerda-Jacobo, Jaime
Avalos Gonzalez, Alberto
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michoacana, Fac Ingn Elect, Div Estudios Postgrado, Mexico City, DF, MexicoUniv Michoacana, Fac Ingn Elect, Div Estudios Postgrado, Mexico City, DF, Mexico
机构:
Dipartimento di Scienze Sociali ed Economiche, Sapienza, Università di Roma, P.za Aldo Moro, 5Dipartimento di Scienze Sociali ed Economiche, Sapienza, Università di Roma, P.za Aldo Moro, 5
D'Urso P.
De Giovanni L.
论文数: 0引用数: 0
h-index: 0
机构:
Dipartimento di Scienze Politiche, LUISS Guido Carli, Viale Pola 12Dipartimento di Scienze Sociali ed Economiche, Sapienza, Università di Roma, P.za Aldo Moro, 5
De Giovanni L.
Massari R.
论文数: 0引用数: 0
h-index: 0
机构:
Dipartimento di Scienze Sociali ed Economiche, Sapienza, Università di Roma, P.za Aldo Moro, 5Dipartimento di Scienze Sociali ed Economiche, Sapienza, Università di Roma, P.za Aldo Moro, 5
Massari R.
Di Lallo D.
论文数: 0引用数: 0
h-index: 0
机构:
Dipartimento di Scienze Statistiche, Sapienza, Università di Roma, P.za Aldo Moro, 5Dipartimento di Scienze Sociali ed Economiche, Sapienza, Università di Roma, P.za Aldo Moro, 5