Construction of nonnegative symmetric matrices with given spectrum

被引:25
作者
Laffey, Thomas J. [1 ]
Smigoc, Helena [1 ]
机构
[1] Univ Coll Dublin, Dept Math, Dublin 2, Ireland
基金
爱尔兰科学基金会;
关键词
nonnegative inverse eigenvalue problem; symmetric matrices; eigenvalues;
D O I
10.1016/j.laa.2006.10.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let sigma = (lambda(1),..., lambda(n)) be the spectrum of a nonnegative symmetric matrix A with the Perron eigenvalue lambda(1), a diagonal entry c and let tau = (mu(1),..., mu(m)) be the spectrum of a nonnegative symmetric matrix B with the Perron eigenvalue mu(1). We show how to construct a nonnegative symmetric rnatrix C with the spectrum (lambda(1) + max{0, mu(1) - c}, lambda(2), . . . , lambda(n), mu(2), . . . , mu(m)). (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:97 / 109
页数:13
相关论文
共 23 条
[1]  
[Anonymous], 1994, CLASSICS APPL MATH
[2]   Negativity compensation in the nonnegative inverse eigenvalue problem [J].
Borobia, A ;
Moro, J ;
Soto, R .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 393 (1-3) :73-89
[3]   THE SPECTRA OF NONNEGATIVE MATRICES VIA SYMBOLIC DYNAMICS [J].
BOYLE, M ;
HANDELMAN, D .
ANNALS OF MATHEMATICS, 1991, 133 (02) :249-316
[4]   The nonnegative inverse eigenvalue problem [J].
Egleston, PD ;
Lenker, TD ;
Narayan, SK .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 379 :475-490
[5]  
Fiedler M., 1974, Linear Algebra and Its Applications, V9, P119, DOI 10.1016/0024-3795(74)90031-7
[6]  
Horn R. A., 1986, Matrix analysis
[7]  
Kellogg R.B., 1971, LINEAR ALGEBRA APPL, V4, P191
[8]  
Knudsen C., 2001, ELECTRON J LINEAR AL, V8, P110, DOI [10.13001/1081-3810.1064, DOI 10.13001/1081-3810.1064]
[9]  
Laffey TJ, 1998, LINEAR ALGEBRA APPL, V276, P349
[10]  
Laffey TJ, 1999, LINEAR ALGEBRA APPL, V303, P295