Preparation of nanostructured Gd2Zr2O7-LaPO4 thermal barrier coatings and their calcium-magnesium-alumina-silicate (CMAS) resistance

被引:64
作者
Li, Mingzhu [1 ,2 ,3 ]
Cheng, Yuxian [4 ]
Guo, Lei [1 ,2 ,3 ]
Zhang, Yuchen [1 ,2 ]
Zhang, Chenglong [1 ,2 ,3 ]
He, Sixian [1 ,2 ]
Sun, Wei [1 ]
Ye, Fuxing [1 ,2 ,3 ]
机构
[1] Tianjin Univ, Sch Mat Sci & Engn, Tianjin, Peoples R China
[2] Tianjin Univ, Tianjin Key Lab Adv Joining Technol, Tianjin, Peoples R China
[3] Tianjin Univ, Key Lab Adv Ceram & Machining Technol, Minist Educ, 92 Weijin Rd, Tianjin 300072, Peoples R China
[4] AECC Shenyang Liming Aero Engine Grp Corp Ltd, Shenyang 110043, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermal barrier coatings (TBCs); Doped Gd2Zr2O7; Air plasma spraying (APS); Nanostructure; Calcium-magnesium-alumina-silicate (CMAS); HOT CORROSION BEHAVIOR; LUMINESCENCE PROPERTIES; TOUGHENING AGENT; PROGRESS UPDATE; PVD; MICROSTRUCTURE; DEGRADATION; DEPOSITS; ASH; AIR;
D O I
10.1016/j.jeurceramsoc.2017.03.069
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nanostructured 30 mol% LaPO4 doped Gd2Zr2O2 (Gd2Zr2O2-LaPO4) thermal barrier coatings (TBCs) were produced by air plasma spraying (APS). The coatings consist of Gd2Zr2O2 and LaPO4 phases, with desirable chemical composition and obvious nanozones embedded in the coating microstructure. Calcium-magnesium-alumina-silicate (CMAS) corrosion tests were carried out at 1250 degrees C for 1-8 h to study the corrosion resistance of the coatings. Results indicated that the nanostructured Gd2Zr2O2-LaPO4 TBCs reveals high resistance to penetration by the CMAS melt. During corrosion tests, an impervious crystalline reaction layer consisting of Gd-La-P apatite, anorthite, spinel and tetragonal ZrO2 phases forms on the coating surfaces. The layer is stable at high temperatures and has significant effect on preventing further infiltration of the molten CMAS into the coatings. Furthermore, the porous nanozones could gather the penetrated molten CMAS like as an absorbent, which benefits the CMAS resistance of the coatings. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3425 / 3434
页数:10
相关论文
共 47 条
[31]   Advanced structural ceramics in aerospace propulsion [J].
Padture, Nitin P. .
NATURE MATERIALS, 2016, 15 (08) :804-809
[32]   Materials science - Thermal barrier coatings for gas-turbine engine applications [J].
Padture, NP ;
Gell, M ;
Jordan, EH .
SCIENCE, 2002, 296 (5566) :280-284
[33]   Equilibrium relationships between thermal barrier oxides and silicate melts [J].
Poerschke, David L. ;
Barth, Talia L. ;
Levi, Carlos G. .
ACTA MATERIALIA, 2016, 120 :302-314
[34]   CMAS-Resistant Thermal Barrier Coatings (TBC) [J].
Rai, Amarendra K. ;
Bhattacharya, Rabi S. ;
Wolfe, Douglas E. ;
Eden, Timothy J. .
INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2010, 7 (05) :662-674
[35]   Microstructure and thermal properties of nanostructured lanthana-doped yttria-stabilized zirconia thermal barrier coatings by air plasma spraying [J].
Rauf, A. ;
Yu, Q. ;
Jin, L. ;
Zhou, C. .
SCRIPTA MATERIALIA, 2012, 66 (02) :109-112
[36]   Processing science of advanced thermal-barrier systems [J].
Sampath, Sanjay ;
Schulz, Uwe ;
Jarligo, Maria Ophelia ;
Kuroda, Seiji .
MRS BULLETIN, 2012, 37 (10) :903-910
[37]   Degradation of La2Zr2O7 and other novel EB-PVD thermal barrier coatings by CIVIAS (CaO-MgO-Al2O3-SiO2) and volcanic ash deposits [J].
Schulz, Uwe ;
Braue, Wolfgang .
SURFACE & COATINGS TECHNOLOGY, 2013, 235 :165-173
[38]   Damage mechanisms, life prediction, and development of EB-PVD thermal barrier coatings for turbine airfoils [J].
Strangman, Tom ;
Raybould, Derek ;
Jameel, Ahsan ;
Baker, Wil .
SURFACE & COATINGS TECHNOLOGY, 2007, 202 (4-7) :658-664
[39]   Relationships between structural and luminescence properties in Eu3+-doped new calcium borohydroxyapatite [J].
Ternane, R ;
Panczer, G ;
Cohen-Adad, MT ;
Goutaudier, C ;
Boulon, G ;
Kbir-Ariguib, N ;
Trabelsi-Ayedi, M .
OPTICAL MATERIALS, 2001, 16 (1-2) :291-300
[40]   Overview on advanced thermal barrier coatings [J].
Vassen, Robert ;
Jarligo, Maria Ophelia ;
Steinke, Tanja ;
Mack, Daniel Emil ;
Stoever, Detlev .
SURFACE & COATINGS TECHNOLOGY, 2010, 205 (04) :938-942