A Liouville theorem for weighted p-Laplace operator on smooth metric measure spaces

被引:5
作者
Wang, Lin Feng [1 ]
Zhang, Ze Yu [1 ]
Zhao, Liang [2 ]
Zhou, Yu Jie [1 ]
机构
[1] Nantong Univ, Sch Sci, Nantong 226007, Jiangsu, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Jiangsu, Peoples R China
关键词
Bakry-Emery curvature; smooth metric measure space; weighted p-Laplace operator; Moser iteration; MEAN-CURVATURE FLOW; RIEMANNIAN-MANIFOLDS; HARMONIC FUNCTIONS; GRADIENT ESTIMATE; EQUATIONS;
D O I
10.1002/mma.4031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that on a smooth metric measure space with m-Bakry-mery curvature bounde from below by -(m - 1) K for some constant K >= 0 (i. e., Ric(f,m) >= -(m - 1)K), the following degenerate elliptic equation Delta(f,p)u = -lambda(f,p) vertical bar u vertical bar(p=2)u has no nonconstant positive solution when p > 1 and constant lambda(f,p) satisfies lambda(f,p) > p(-p)K(p/2)(m - 1)(p). Our approach is based on the local Sobolev inequality and the Moser's iterative technique and is different from Cheng-Yau's method, which was used by Wang-Zhu in 2012 to derive a same Liouville theorem when 1 < p <= 2, Ric(f,m) >= -(m-1) K and the sectional curvature is bounded from below. Copyright (C) 2016 JohnWiley & Sons, Ltd.
引用
收藏
页码:992 / 1002
页数:11
相关论文
共 15 条
[1]  
Bakry Dominique, 2005, Theta Ser. Adv. Math., V4, P115
[2]   DIFFERENTIAL EQUATIONS ON RIEMANNIAN MANIFOLDS AND THEIR GEOMETRIC APPLICATIONS [J].
CHENG, SY ;
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1975, 28 (03) :333-354
[3]   The inverse mean curvature flow and the Riemannian Penrose Inequality [J].
Huisken, G ;
Ilmanen, T .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2001, 59 (03) :353-437
[4]  
Kotschwar B, 2009, ANN SCI ECOLE NORM S, V42, P1
[5]  
Li P., 2006, 14 ESCOLA GEOMETRIA
[6]   Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds [J].
Li, XD .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (10) :1295-1361
[7]  
Moser R, 2007, J EUR MATH SOC, V9, P77
[8]  
Perelman G., ARXIVMATHDG0211159
[9]  
SALOFFCOSTE L, 1992, J DIFFER GEOM, V36, P417
[10]   REGULARITY FOR A MORE GENERAL-CLASS OF QUASILINEAR ELLIPTIC-EQUATIONS [J].
TOLKSDORF, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1984, 51 (01) :126-150