The problem of equilibrium is critical for planning, control, and analysis of legged robot. Control algorithms for legged robots use the equilibrium criteria to avoid falls. The computational efficiency of the equilibrium tests is critical. To comply with this it is necessary to calculate the horizontal momentum rotation for every moment. For arbitrary contact geometries, more complex and computationally-expensive techniques are required. On the other hand designing equilibrium controllers for legged robots is a challenging problem. Nonlinear or more complex control systems have to be designed, complicating the computational cost and demanding robust actuators. In this paper, we propose a force-balanced mechanism as a building element for the synthesis of legged robots that can be easily balance controlled. The mechanism has two degrees of freedom, in opposition to the more traditional one degree of freedom linkages generally used as legs in robotics. This facilitates the efficient use of the "projection of the center of mass" criterion with the aid of a counter rotating inertia, reducing the number of calculations required by the control algorithm. Different experiments to balance the mechanism and to track unstable set-point positions have been done. Proportional error controllers with different strategies as well as learning approaches, based on an artificial intelligence method namely artificial hydrocarbon networks, have been used. Dynamic simulations results are reported. Videos of experiments will be available at: https://sites.google.com/up.edu.mx/smart-robotic-legs/.