Scene Graph Generation With Hierarchical Context

被引:23
作者
Ren, Guanghui [1 ,2 ]
Ren, Lejian [1 ]
Liao, Yue [3 ]
Liu, Si [3 ]
Li, Bo [3 ]
Han, Jizhong [1 ]
Yan, Shuicheng [4 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, Beijing 100093, Peoples R China
[2] Chinese Acad Sci, Shenzhen Inst Adv Technol SIAT, Guangdong Prov Key Lab Comp Vis & Virtual Real Te, Shenzhen 518055, Peoples R China
[3] Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China
[4] YITU Technol, Beijing 100086, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Correlation; Feature extraction; Depression; Visualization; Learning systems; Silicon; Generative adversarial networks; Attention mechanism; context aggregation; scene graph generation;
D O I
10.1109/TNNLS.2020.2979270
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Scene graph generation has received increasing attention in recent years. Enhancing the predicate representations is an important entry point to this task. There are various methods to fully investigate the context of representation enhancement. In this brief, we analyze the decisive factors that can significantly affect the relation detection results. Our analysis shows that spatial correlations between objects, focused regions of objects, and global hints related to the relations have strong influences in relation prediction and contradiction elimination. Based on our analysis, we propose a hierarchical context network (HCNet) to generate a scene graph. HCNet consists of three contexts, including interaction context, depression context, and global context, which integrates information from pair, object, and graph levels. The experiments show that our method outperforms the state-of-the-art methods on the Visual Genome (VG) data set.
引用
收藏
页码:909 / 915
页数:7
相关论文
共 50 条
[41]   RelTR: Relation Transformer for Scene Graph Generation [J].
Cong, Yuren ;
Yang, Michael Ying ;
Rosenhahn, Bodo .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (09) :11169-11183
[42]   CONTEXTUAL LABEL TRANSFORMATION FOR SCENE GRAPH GENERATION [J].
Lee, Wonhee ;
Kim, Sungeun ;
Kim, Gunhee .
2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, :2533-2537
[43]   Predicate Correlation Learning for Scene Graph Generation [J].
Tao, Leitian ;
Mi, Li ;
Li, Nannan ;
Cheng, Xianhang ;
Hu, Yaosi ;
Chen, Zhenzhong .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 :4173-4185
[44]   Informative Scene Graph Generation via Debiasing [J].
Gao, Lianli ;
Lyu, Xinyu ;
Guo, Yuyu ;
Hu, Yuxuan ;
Li, Yuan-Fang ;
Xu, Lu ;
Shen, Heng Tao ;
Song, Jingkuan .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2025, 133 (07) :4196-4219
[45]   Quaternion Relation Embedding for Scene Graph Generation [J].
Wang, Zheng ;
Xu, Xing ;
Wang, Guoqing ;
Yang, Yang ;
Shen, Heng Tao .
IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 :8646-8656
[46]   Constrained Structure Learning for Scene Graph Generation [J].
Liu, Daqi ;
Bober, Miroslaw ;
Kittler, Josef .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (10) :11588-11599
[47]   Consistent Scene Graph Generation by Constraint Optimization [J].
Chen, Boqi ;
Marussy, Kristof ;
Pilarski, Sebastian ;
Semerath, Oszkar ;
Varro, Daniel .
PROCEEDINGS OF THE 37TH IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING, ASE 2022, 2022,
[48]   NICEST: Noisy Label Correction and Training for Robust Scene Graph Generation [J].
Li, Lin ;
Xiao, Jun ;
Shi, Hanrong ;
Zhang, Hanwang ;
Yang, Yi ;
Liu, Wei ;
Chen, Long .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (10) :6873-6888
[49]   Pair Then Relation: Pair-Net for Panoptic Scene Graph Generation [J].
Wang, Jinghao ;
Wen, Zhengyu ;
Li, Xiangtai ;
Guo, Zujin ;
Yang, Jingkang ;
Liu, Ziwei .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) :10452-10465
[50]   Semantic scene graph generation based on an edge dual scene graph and message passing neural network☆ [J].
Kim, Hyeongjin ;
Ko, Byoung Chul .
IMAGE AND VISION COMPUTING, 2025, 160