Scene Graph Generation With Hierarchical Context

被引:22
|
作者
Ren, Guanghui [1 ,2 ]
Ren, Lejian [1 ]
Liao, Yue [3 ]
Liu, Si [3 ]
Li, Bo [3 ]
Han, Jizhong [1 ]
Yan, Shuicheng [4 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, Beijing 100093, Peoples R China
[2] Chinese Acad Sci, Shenzhen Inst Adv Technol SIAT, Guangdong Prov Key Lab Comp Vis & Virtual Real Te, Shenzhen 518055, Peoples R China
[3] Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China
[4] YITU Technol, Beijing 100086, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Correlation; Feature extraction; Depression; Visualization; Learning systems; Silicon; Generative adversarial networks; Attention mechanism; context aggregation; scene graph generation;
D O I
10.1109/TNNLS.2020.2979270
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Scene graph generation has received increasing attention in recent years. Enhancing the predicate representations is an important entry point to this task. There are various methods to fully investigate the context of representation enhancement. In this brief, we analyze the decisive factors that can significantly affect the relation detection results. Our analysis shows that spatial correlations between objects, focused regions of objects, and global hints related to the relations have strong influences in relation prediction and contradiction elimination. Based on our analysis, we propose a hierarchical context network (HCNet) to generate a scene graph. HCNet consists of three contexts, including interaction context, depression context, and global context, which integrates information from pair, object, and graph levels. The experiments show that our method outperforms the state-of-the-art methods on the Visual Genome (VG) data set.
引用
收藏
页码:909 / 915
页数:7
相关论文
共 50 条
  • [1] Multimodal Context Embedding for Scene Graph Generation
    Jung, Gayoung
    Kim, Incheol
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2020, 16 (06): : 1250 - 1260
  • [2] A Novel Framework for Scene Graph Generation via Prior Knowledge
    Wang, Zhenghao
    Lian, Jing
    Li, Linhui
    Zhao, Jian
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (05) : 3768 - 3781
  • [3] Scene Adaptive Context Modeling and Balanced Relation Prediction for Scene Graph Generation
    Xu, Kai
    Wang, Lichun
    Li, Shuang
    Gao, Tong
    Yin, Baocai
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2025, 21 (03)
  • [4] Augmented Spatial Context Fusion Network for Scene Graph Generation
    Xu, Hongbo
    Wang, LiChun
    Xu, Kai
    Fu, Fangyu
    Yin, Baocai
    Huang, Qingming
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [5] Hypercomplex context guided interaction modeling for scene graph generation
    Wang, Zheng
    Xu, Xing
    Luo, Yadan
    Wang, Guoqing
    Yang, Yang
    PATTERN RECOGNITION, 2023, 141
  • [6] Debiased Scene Graph Generation for Dual Imbalance Learning
    Zhou, Hao
    Zhang, Jun
    Luo, Tingjin
    Yang, Yazhou
    Lei, Jun
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (04) : 4274 - 4288
  • [7] Hierarchical Memory Learning for Fine-Grained Scene Graph Generation
    Deng, Youming
    Li, Yansheng
    Zhang, Yongjun
    Xiang, Xiang
    Wang, Jian
    Chen, Jingdong
    Ma, Jiayi
    COMPUTER VISION - ECCV 2022, PT XXVII, 2022, 13687 : 266 - 283
  • [8] Adversarial Attacks on Scene Graph Generation
    Zhao, Mengnan
    Zhang, Lihe
    Wang, Wei
    Kong, Yuqiu
    Yin, Baocai
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 3210 - 3225
  • [9] Relation Regularized Scene Graph Generation
    Guo, Yuyu
    Gao, Lianli
    Song, Jingkuan
    Wang, Peng
    Sebe, Nicu
    Shen, Heng Tao
    Li, Xuelong
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (07) : 5961 - 5972
  • [10] PMP-NET: RETHINKING VISUAL CONTEXT FOR SCENE GRAPH GENERATION
    Tong, Xuezhi
    Wang, Rui
    Wang, Chuan
    Zhang, Sanyi
    Cao, Xiaochun
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 1940 - 1944