The Haagerup property for locally compact quantum groups

被引:46
作者
Daws, Matthew [1 ]
Fima, Pierre [2 ]
Skalski, Adam [3 ,4 ]
White, Stuart [5 ]
机构
[1] Univ Leeds, Sch Math, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Paris 07, Inst Math Jussieu, 175 Rue Chevaleret, F-75013 Paris, France
[3] Polish Acad Sci, Inst Math, Ul Sniadeckich 8, PL-00956 Warsaw, Poland
[4] Univ Warsaw, Fac Math Informat & Mech, Ul Banacha 2, PL-02097 Warsaw, Poland
[5] Univ Glasgow, Univ Gardens, Sch Math & Stat, Glasgow G12 8QW, Lanark, Scotland
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2016年 / 711卷
基金
英国工程与自然科学研究理事会;
关键词
FREE-PRODUCTS; APPROXIMATION PROPERTIES; CO-AMENABILITY; K-AMENABILITY; CONVOLUTION; COCYCLES; MULTIPLIERS; ALGEBRAS; THEOREM;
D O I
10.1515/crelle-2013-0113
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Haagerup property for locally compact groups is generalised to the context of locally compact quantum groups, with several equivalent characterisations in terms of the unitary representations and positive-definite functions established. In particular it is shown that a locally compact quantum group G has the Haagerup property if and only if its mixing representations are dense in the space of all unitary representations. For discrete G we characterise the Haagerup property by the existence of a symmetric proper conditionally negative functional on the dual quantum group (G) over cap; by the existence of a real proper cocycle on G, and further, if G is also unimodular we show that the Haagerup property is a von Neumann property of G. This extends results of Akemann, Walter, Bekka, Cherix, Valette, and Jolissaint to the quantum setting and provides a connection to the recent work of Brannan. We use these characterisations to show that the Haagerup property is preserved under free products of discrete quantum groups.
引用
收藏
页码:189 / 229
页数:41
相关论文
共 82 条
[51]   Locally compact quantum groups in the universal setting [J].
Kustermans, J .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2001, 12 (03) :289-338
[52]  
Kustermans J., 1997, PREPRINT
[53]  
Kustermans J, 2005, LECT NOTES MATH, V1865, P99
[54]   Property (T) and exotic quantum group norms [J].
Kyed, David ;
Soltan, Piotr M. .
JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2012, 6 (04) :773-800
[55]   A cohomological description of property (T) for quantum groups [J].
Kyed, David .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (06) :1469-1493
[56]  
Lance E. C., 1995, Hilbert C*-Modules. A toolkit for operator algebraists, V210
[57]  
Lemeux F., 2013, PREPRINT
[58]   Quantum stochastic convolution cocycles II [J].
Lindsay, J. Martin ;
Skalski, Adam G. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 280 (03) :575-610
[59]   Convolution semigroups of states [J].
Lindsay, J. Martin ;
Skalski, Adam G. .
MATHEMATISCHE ZEITSCHRIFT, 2011, 267 (1-2) :325-339
[60]   Quantum stochastic convolution cocycles I [J].
Lindsay, JM ;
Skalski, AG .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2005, 41 (03) :581-604