The Haagerup property for locally compact quantum groups

被引:46
作者
Daws, Matthew [1 ]
Fima, Pierre [2 ]
Skalski, Adam [3 ,4 ]
White, Stuart [5 ]
机构
[1] Univ Leeds, Sch Math, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Paris 07, Inst Math Jussieu, 175 Rue Chevaleret, F-75013 Paris, France
[3] Polish Acad Sci, Inst Math, Ul Sniadeckich 8, PL-00956 Warsaw, Poland
[4] Univ Warsaw, Fac Math Informat & Mech, Ul Banacha 2, PL-02097 Warsaw, Poland
[5] Univ Glasgow, Univ Gardens, Sch Math & Stat, Glasgow G12 8QW, Lanark, Scotland
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2016年 / 711卷
基金
英国工程与自然科学研究理事会;
关键词
FREE-PRODUCTS; APPROXIMATION PROPERTIES; CO-AMENABILITY; K-AMENABILITY; CONVOLUTION; COCYCLES; MULTIPLIERS; ALGEBRAS; THEOREM;
D O I
10.1515/crelle-2013-0113
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Haagerup property for locally compact groups is generalised to the context of locally compact quantum groups, with several equivalent characterisations in terms of the unitary representations and positive-definite functions established. In particular it is shown that a locally compact quantum group G has the Haagerup property if and only if its mixing representations are dense in the space of all unitary representations. For discrete G we characterise the Haagerup property by the existence of a symmetric proper conditionally negative functional on the dual quantum group (G) over cap; by the existence of a real proper cocycle on G, and further, if G is also unimodular we show that the Haagerup property is a von Neumann property of G. This extends results of Akemann, Walter, Bekka, Cherix, Valette, and Jolissaint to the quantum setting and provides a connection to the recent work of Brannan. We use these characterisations to show that the Haagerup property is preserved under free products of discrete quantum groups.
引用
收藏
页码:189 / 229
页数:41
相关论文
共 82 条
[1]   UNBOUNDED NEGATIVE DEFINITE FUNCTIONS [J].
AKEMANN, CA ;
WALTER, ME .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1981, 33 (04) :862-871
[2]  
[Anonymous], 1993, Lecture Notes in Mathematics
[3]  
[Anonymous], 1977, North-Holland Mathematical Library
[4]  
[Anonymous], 1983, P INT C MATHEMATICIA
[5]  
[Anonymous], 2007, P ICM, VI, P445
[6]  
[Anonymous], 1992, CRM MONOGRAPH SERIES
[7]   Two-parameter families of quantum symmetry groups [J].
Banica, Teodor ;
Skalski, Adam .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (11) :3252-3282
[8]   On amenability and co-amenability of algebraic quantum groups and their corepresentations [J].
Bédos, E ;
Conti, R ;
Tuset, L .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2005, 57 (01) :17-60
[9]   Amenability and co-amenability for locally compact quantum groups [J].
Bédos, E ;
Tuset, L .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2003, 14 (08) :865-884
[10]  
Bedos E., 2002, INT J MATH MATH SCI, V31, P577