Finsler Laplacians and minimal-energy maps

被引:41
作者
Centore, P
机构
[1] Gales Ferry, CT 06335
关键词
D O I
10.1142/S0129167X00000027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any Finsler manifold, there is a geometrically natural Laplacian operator, called the mean-value Laplacian, which generalizes the Riemannian Laplacian. We show that, like the Riemannian Laplacian (for functions), we can see the vanishing of the mean-value Laplacian at some function f as the minimizing of an energy functional e(f) by f. This energy functional e depends on a Riemannian metric canonically associated to the Finsler metric and on a canonically associated Volume form. We relate this construction to a more general construction of Jest, and define a notion of harmonic mappings between Finsler manifolds.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 12 条
  • [1] ANTONELLI PL, 1998, IN PRESS P FINSL LAP
  • [2] ANTONELLI PL, 1998, P C FINSL LAPL
  • [3] BAO D, 1996, CR HEBD ACAD SCI, V223, P51
  • [4] BAO D, UNPUB INTRO RIEMANNF
  • [5] INTRINSIC AREA
    BUSEMANN, H
    [J]. ANNALS OF MATHEMATICS, 1947, 48 (02) : 234 - 267
  • [6] Cartan E., 1934, SCI IND, Vvol 79
  • [7] CENTORE P, 1998, THESIS U TORONTO
  • [8] CENTORE P, 1998, P C FINSL LAPL
  • [9] EELLS J, 1983, REGIONAL C SERIES MA, V50
  • [10] FINSLER P, 1918, THESIS GOTTINGEN