Relationship between oil recovery and CO2 storage efficiency under the influence of gravity segregation in a CO2 EOR system

被引:8
|
作者
Han, Jinju [1 ]
Park, Hyemin [1 ]
Sung, Wonmo [1 ]
机构
[1] Hanyang Univ, Dept Nat Resources & Environm Engn, 222 Wangsimni Ro, Seoul 133791, South Korea
关键词
Gravity segregation; CO2; EOR; storage; Oil recovery; Miscibility; CO2 injection rate; MISCIBLE DISPLACEMENT;
D O I
10.1007/s12665-015-4879-4
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Integrating the technologies of EOR and CO2 sequestration could economically bring large quantities of CO2 storage capacity and increase recoverable oil, which could be called "green oil''. Gravity segregation, particularly in CO2 gas flooding, is an important factor for the successful application of CO2 flooding. A major goal of this study was to analyze how miscibility conditions and CO2 injection rate affect both oil recovery and CO2 storage efficiency under an environment of gravity segregation. This paper presents experimental observations of both EOR and CO2 sequestration for CO2 flooding in immiscible and near-miscible conditions at various CO2 injection rates using two-dimensional vertical Berea sandstone slabs (20 9 20 cm). The experiments were run under immiscible and near-miscible conditions with various CO2 injection rates. CO2 was injected continuously up to a maximum three-pore-volume injection into sandstone saturated with n-decane. From the results, both oil recovery and CO2 storage efficiency in the near-miscible conditions were much better than the immiscible conditions in the case of a vertical system containing a gravity segregation environment. Ultimately, in the relationship between oil recovery and CO2 storage efficiency, from this study, we propose that they behaved similarly, with a trend corresponding to the CO2 injection rate in immiscible conditions, whereas they showed the opposite relationship in near-miscible conditions.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [31] Investigation of CO2 storage and EOR of alternating N2 and CO2 injection using experiments and numerical simulation
    Li, Zongfa
    Su, Yuliang
    Shen, Fuxiao
    Huang, Lijuan
    Ren, Shaoran
    Hao, Yongmao
    Wang, Wendong
    Meng, Yang
    Fan, Yang
    FUEL, 2023, 340
  • [32] Tertiary oil recovery and CO2 storage from laboratory injection of CO2 or water-saturated CO2 into a sandstone core
    Yin, Hang
    Ge, Jiachao
    Cook, Bob
    Smith, Barry
    Hussain, Furqan
    INTERNATIONAL JOURNAL OF COAL GEOLOGY, 2023, 275
  • [33] Enhanced Oil Recovery and CO2 Storage Performance in Continental Shale Oil Reservoirs Using CO2 Pre-Injection Fracturing
    Zhang, An
    Lei, Yalin
    Zhang, Chenjun
    Tao, Jiaping
    PROCESSES, 2023, 11 (08)
  • [34] Origin, distribution, and CO2 EOR and CO2 storage resource assessment of selected residual oil zone fairways in the Illinois Basin
    Webb, Nathan D.
    Grigsby, Nate P.
    Frailey, Scott M.
    GEOENERGY SCIENCE AND ENGINEERING, 2024, 239
  • [35] Molecular insights into CO2 enhanced oil recovery and CO2 storage in quartz nanopores
    Li, Bing
    Sui, Hongguang
    Wang, Diansheng
    Wang, Yudou
    Zhang, Fengyun
    Yao, Jun
    GEOENERGY SCIENCE AND ENGINEERING, 2025, 246
  • [36] Carbonated Water Injection (CWI) - A Productive Way of Using CO2 for Oil Recovery and CO2 Storage
    Sohrabi, Mehran
    Riazi, Masoud
    Jamiolahmady, Mahmoud
    Kechut, Nor Idah
    Ireland, Shaun
    Robertson, Graeme
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 2192 - 2199
  • [37] Capacity assessment and co-optimization of CO2 storage and enhanced oil recovery in residual oil zones
    Chen, Bailian
    Pawar, Rajesh J.
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2019, 182
  • [38] Co-optimizing enhanced oil recovery and CO2 storage by simultaneous water and CO2 injection
    Kamali, Fatemeh
    Cinar, Yildiray
    ENERGY EXPLORATION & EXPLOITATION, 2014, 32 (02) : 281 - 300
  • [39] Nanoparticle-stabilized CO2 foam to improve conventional CO2 EOR process and recovery at Bati Raman oil field, Turkey
    Safran, S. Esra
    Kok, Mustafa Versan
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 208
  • [40] Numerical Trend Analysis for Factors Affecting EOR Performance and CO2 Storage in Tight Oil Reservoirs
    Syed, Fahad Iqbal
    Muther, Temoor
    Van, Vuong Pham
    Dahaghi, Amirmasoud Kalantari
    Negahban, Shahin
    FUEL, 2022, 316