Quantization dimension of random self-similar measures

被引:5
作者
Dai, Meifeng [1 ]
Tan, Xiao [1 ]
机构
[1] Jiangsu Univ, Nonlinear Sci Res Ctr, Fac Sci, Zhenjiang 212013, Jiangsu, Peoples R China
基金
美国国家科学基金会;
关键词
Quantization dimension; Random self-similar set; Random measure; SIMILAR SET;
D O I
10.1016/j.jmaa.2009.08.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the quantization dimension of a random self-similar measure mu supported on the random self-similar set K(omega). We establish a relationship between the quantization dimension of mu and its distribution. At last we give a simple example to show that how to use the formula of the quantization dimension. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:471 / 475
页数:5
相关论文
共 13 条
[1]   MULTIDIMENSIONAL ASYMPTOTIC QUANTIZATION THEORY WITH RTH POWER DISTORTION MEASURES [J].
BUCKLEW, JA ;
WISE, GL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1982, 28 (02) :239-247
[2]  
[邓爱姣 Deng Aijiao], 2003, [数学物理学报. A辑, Acta Mathematica Scientia], V23, P554
[3]  
Graf S, 2002, MATH NACHR, V241, DOI 10.1002/1522-2616(200207)241:1<103::AID-MANA103>3.0.CO
[4]  
2-J
[5]   The quantization of the Cantor distribution [J].
Graf, S ;
Luschgy, H .
MATHEMATISCHE NACHRICHTEN, 1997, 183 :113-133
[6]  
Graf S., 2000, LECT NOTES MATH, V1730
[7]   The necessary and sufficient conditions for various self-similar sets and their dimension [J].
Hu, DH .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2000, 90 (02) :243-262
[8]  
Hu DH, 2001, SCI CHINA SER A, V44, P742
[9]   The dimension for random sub-self-similar set [J].
Hu, Dihe ;
Zhang, Xiaomin .
ACTA MATHEMATICA SCIENTIA, 2007, 27 (03) :561-573
[10]   The random shift set and random sub-self-similar set [J].
Hu Dihe ;
Zhang Xiaomin .
ACTA MATHEMATICA SCIENTIA, 2007, 27 (02) :267-273