共 43 条
Genome editing of the SfABCC2 gene confers resistance to Cry1F toxin from Bacillus thuringiensis in Spodoptera frugiperda
被引:40
|作者:
Jin Ming-hui
[1
,2
]
Tao Jia-hui
[1
]
Li Q
[1
]
Cheng Ying
[1
]
Sun Xiao-xu
[2
]
Wu Kong-ming
[2
]
Xiao Yu-tao
[1
]
机构:
[1] Chinese Acad Agr Sci, Agr Genom Inst Shenzhen, Shenzhen 518120, Peoples R China
[2] Chinese Acad Agr Sci, Inst Plant Protect, State Key Lab Biol Plant Dis & Insect Pests, Beijing 100193, Peoples R China
关键词:
Spodoptera frugiperda;
ABCC2;
CRISPR/Cas9;
Bt receptor;
Cry1F;
HELICOVERPA-ARMIGERA;
CRISPR/CAS9;
MUTATION;
RECEPTOR;
CADHERIN;
COTTON;
MAIZE;
D O I:
10.1016/S2095-3119(19)62772-3
中图分类号:
S [农业科学];
学科分类号:
09 ;
摘要:
ATP-binding cassette transporter C2 (ABCC2) is known to be a receptor for Bacillus thuringiensis (Bt) toxins in several lepidopteran insects. Mutations in the ABCC2 gene have been genetically linked to field-evolved resistance to the Cry1F toxin from Bt in Spodoptera frugiperda. Here we generated a SfABCC2 knockout strain of S. frugiperda using the CRISPR/Cas9 system to provide further functional evidence of the role of this gene in susceptibility and resistance to Cry1F. Results from bioassays showed that the SfABCC2 knockout S. frugiperda strain displayed 118-fold resistance to Cry1F compared with the parental DH19 strain, but no resistance to Vip3A toxin from Bt. These results provide the first reverse genetic evidence for SfABCC2 as a functional receptor for Cry1F.
引用
收藏
页码:815 / 820
页数:6
相关论文