Towards optimized triboelectric nanogenerators

被引:157
作者
Dharmasena, R. D. I. G. [1 ]
Silva, S. R. P. [1 ]
机构
[1] Univ Surrey, Dept Elect & Elect Engn, Adv Technol Inst, Guildford GU2 7XH, Surrey, England
基金
英国工程与自然科学研究理事会;
关键词
Triboelectric nanogenerators; Energy harvesting; Flexible electronics; Device optimisation; CONTACT ELECTRIFICATION; CHARGE-DENSITY; SURFACE FUNCTIONALIZATION; STRUCTURAL OPTIMIZATION; ENERGY-CONVERSION; WIND ENERGY; PERFORMANCE; GENERATOR; ELECTRODE; SENSORS;
D O I
10.1016/j.nanoen.2019.05.057
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The rapid progression of electronic technologies is predicted to enhance the quality of life of the people around the world. A key challenge in achieving these targets is the need to develop sustainable power sources, which can support the ubiquitous and mobile operation of next generation electronic devices. Energy harvesting from ambient mechanical movements is seen as one of the main approaches in powering autonomous low power electronic systems such as wearables and IoT technology. Triboelectric nanogenerators (TENGs) have attracted significant attention in recent years as an emerging mechanical energy harvesting technology, due to numerous advantages over conventional mechanical energy harvesters. In this paper, we present a comprehensive review on the structural, material, motion and environmental parameters affecting the power output of triboelectric nanogenerators. The optimisation strategies for these energy harvesters are discussed, based on the theoretical and experimental studies in the literature. Finally, we discuss the major challenges in this research field, along with the future outlook.
引用
收藏
页码:530 / 549
页数:20
相关论文
共 128 条
[1]  
[Anonymous], 2014, 190PPENTCIP12CN03C01
[2]  
Apodaca M.M., 2010, ANGEW CHEMIE, V122, P958, DOI DOI 10.1002/ANGE.200905281
[3]   Membrane-Based Self-Powered Triboelectric Sensors for Pressure Change Detection and Its Uses in Security Surveillance and Healthcare Monitoring [J].
Bai, Peng ;
Zhu, Guang ;
Jing, Qingshen ;
Yang, Jin ;
Chen, Jun ;
Su, Yuanjie ;
Ma, Jusheng ;
Zhang, Gong ;
Wang, Zhong Lin .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (37) :5807-5813
[4]   Integrated Multi layered Triboelectric Nanogenerator for Harvesting Biomechanical Energy from Human Motions [J].
Bai, Peng ;
Zhu, Guang ;
Lin, Zong-Hong ;
Jing, Qingshen ;
Chen, Jun ;
Zhang, Gong ;
Ma, Jusheng ;
Wang, Zhong Lin .
ACS NANO, 2013, 7 (04) :3713-3719
[5]  
Bao DC, 2017, J SEMICOND, V38, DOI 10.1088/1674-4926/38/9/095001
[6]   The Mosaic of Surface Charge in Contact Electrification [J].
Baytekin, H. T. ;
Patashinski, A. Z. ;
Branicki, M. ;
Baytekin, B. ;
Soh, S. ;
Grzybowski, B. A. .
SCIENCE, 2011, 333 (6040) :308-312
[7]   Is Water Necessary for Contact Electrification? [J].
Baytekin, H. Tarik ;
Baytekin, Bilge ;
Soh, Siowling ;
Grzybowski, Bartosz A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (30) :6766-6770
[8]   Design of Mechanical Frequency Regulator for Predictable Uniform Power from Triboelectric Nanogenerators [J].
Bhatia, Divij ;
Lee, Jongseo ;
Hwang, Hee Jae ;
Baik, Jeong Min ;
Kim, Songkuk ;
Choi, Dukhyun .
ADVANCED ENERGY MATERIALS, 2018, 8 (15)
[9]   Potential role of motion for enhancing maximum output energy of triboelectric nanogenerator [J].
Byun, Kyung-Eun ;
Lee, Min-Hyun ;
Cho, Yeonchoo ;
Nam, Seung-Geol ;
Shin, Hyeon-Jin ;
Park, Seongjun .
APL MATERIALS, 2017, 5 (07)
[10]   Scavenging Wind Energy by Triboelectric Nanogenerators [J].
Chen, Bo ;
Yang, Ya ;
Wang, Zhong Lin .
ADVANCED ENERGY MATERIALS, 2018, 8 (10)