On modular cyclic codes

被引:42
作者
Dougherty, Steven T.
Park, Young Ho [1 ]
机构
[1] Kangweon Natl Univ, Dept Math, Chunchon 200701, South Korea
[2] Univ Scranton, Dept Math, Scranton, PA 18510 USA
关键词
cyclic codes; constacyclic codes; Galois rings; discrete Fourier transforms; local rings; torsion codes;
D O I
10.1016/j.ffa.2005.06.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study cyclic codes of arbitrary length N over the ring of integers modulo M. We first reduce this to the study of cyclic codes of length N=p(k)n (it prime to p) over the ring Z(p)e for prime divisors p of N. We then use the discrete Fourier transform to obtain an isomorphism gamma between Z(p)e[X]/< X-N - 1 > and a direct surn circle plus Si-i is an element of I of certain local rings which are ambient spaces for codes of length p(k) over certain Galois rings, where I is the complete set of representatives of p-cyclotomic cosets modulo n. Via this isomorphism we may obtain all codes over Z(p)e from the ideals of S-i. The inverse isomorphism of gamma is explicitly determined, so that the polynomial representations of the corresponding ideals can be calculated. The general notion of higher torsion codes is defined and the ideals of S-i are classified in terms of the sequence of their torsion codes. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:31 / 57
页数:27
相关论文
共 12 条
  • [1] On the generators of Z4 cyclic codes of length 2e
    Abualrub, T
    Oehmke, R
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (09) : 2126 - 2133
  • [2] Cyclic codes over Z4 of oddly even length
    Blackford, T
    [J]. DISCRETE APPLIED MATHEMATICS, 2003, 128 (01) : 27 - 46
  • [3] Calderbank A. R., 1995, Designs, Codes and Cryptography, V6, P21, DOI 10.1007/BF01390768
  • [4] ON REPEATED-ROOT CYCLIC CODES
    CASTAGNOLI, G
    MASSEY, JL
    SCHOELLER, PA
    VONSEEMANN, N
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (02) : 337 - 342
  • [5] MDR codes over Zk
    Dougherty, ST
    Shiromoto, K
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (01) : 265 - 269
  • [6] DOUGHERTY ST, 2004, UNPUB CYCLIC CODES Z
  • [7] Kanwar P., 1997, Finite Fields and their Applications, V3, P334, DOI 10.1006/ffta.1997.0189
  • [8] KIM SY, 2004, THESIS KANGWON NATL
  • [9] Mac Williams F., 1977, THEORY ERROR CORRECT
  • [10] McDonald B.R., 1974, Pure and Applied Mathematics