Harnessing a high cargo-capacity transposon for genetic applications in vertebrates

被引:245
作者
Balciunas, Darius
Wangensteen, Kirk J.
Wilber, Andrew
Bell, Jason
Geurts, Aron
Sivasubbu, Sridhar
Wang, Xin
Hackett, Perry B.
Largaespada, David A.
McIvor, R. Scott
Ekker, Stephen C. [1 ]
机构
[1] Univ Minnesota, Inst Human Genet, Arnold & Mabel Beckman Ctr Transposon Res, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Dept Genet Cell Biol & Dev, Minneapolis, MN USA
[3] Univ Minnesota, Dept Biochem Mol Biol & Biophys, Minneapolis, MN USA
[4] Univ Minnesota, Gene Therapy Program, Minneapolis, MN USA
[5] Univ Minnesota, Ctr Canc, Minneapolis, MN USA
[6] Univ Minnesota, Stem Cell Inst, Minneapolis, MN USA
来源
PLOS GENETICS | 2006年 / 2卷 / 11期
关键词
D O I
10.1371/journal.pgen.0020169
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Viruses and transposons are efficient tools for permanently delivering foreign DNA into vertebrate genomes but exhibit diminished activity when cargo exceeds 8 kilobases (kb). This size restriction limits their molecular genetic and biotechnological utility, such as numerous therapeutically relevant genes that exceed 8 kb in size. Furthermore, a greater payload capacity vector would accommodate more sophisticated cis cargo designs to modulate the expression and mutagenic risk of these molecular therapeutics. We show that the Tol2 transposon can efficiently integrate DNA sequences larger than 10 kb into human cells. We characterize minimal sequences necessary for transposition (miniTol2) in vivo in zebrafish and in vitro in human cells. Both the 8.5- kb Tol2 transposon and 5.8-kb miniTol2 engineered elements readily function to revert the deficiency of fumarylacetoacetate hydrolase in an animal model of hereditary tyrosinemia type 1. Together, Tol2 provides a novel nonviral vector for the delivery of large genetic payloads for gene therapy and other transgenic applications.
引用
收藏
页码:1715 / 1724
页数:10
相关论文
共 52 条
[1]   Nonsense mutation at Tyr-4046 in the DNA-dependent protein kinase catalytic subunit of severe combined immune deficiency mice [J].
Araki, R ;
Fujimori, A ;
Hamatani, K ;
Mita, K ;
Saito, T ;
Mori, M ;
Fukumura, R ;
Morimyo, M ;
Muto, M ;
Itoh, M ;
Tatsumi, K ;
Abe, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (06) :2438-2443
[2]   Enhancer trapping in zebrafish using the Sleeping Beauty transposon -: art. no. 62 [J].
Balciunas, D ;
Davidson, AE ;
Sivasubbu, S ;
Hermanson, SB ;
Welle, Z ;
Ekker, SC .
BMC GENOMICS, 2004, 5 (1)
[3]   Hyperactive transposase mutants of the Sleeping Beauty transposon [J].
Baus, J ;
Liu, L ;
Heggestad, AD ;
Sanz, S ;
Fletcher, BS .
MOLECULAR THERAPY, 2005, 12 (06) :1148-1156
[4]   Enhancement of plasmid-mediated gene therapy for muscular dystrophy by directed plasmid integration [J].
Bertoni, C ;
Jarrahian, S ;
Wheeler, TM ;
Li, YN ;
Olivares, EC ;
Calos, MP ;
Rando, TA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (02) :419-424
[5]  
Carlson CM, 2003, GENETICS, V165, P243
[6]   φC31 integrase confers genomic integration and long-term transgene expression in rat retina [J].
Chalberg, TW ;
Genise, HL ;
Vollrath, D ;
Calos, MP .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2005, 46 (06) :2140-2146
[7]   Integration specificity of phage φC31 integrase in the human genome [J].
Chalberg, TW ;
Portlock, JL ;
Olivares, EC ;
Thyagarajan, B ;
Kirby, PJ ;
Hillman, RT ;
Hoelters, J ;
Calos, MP .
JOURNAL OF MOLECULAR BIOLOGY, 2006, 357 (01) :28-48
[8]  
Chuah MKL, 2001, J GENE MED, V3, P3, DOI 10.1002/1521-2254(200101/02)3:1<3::AID-JGM167>3.0.CO
[9]  
2-H
[10]   Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse [J].
Collier, LS ;
Carlson, CM ;
Ravimohan, S ;
Dupuy, AJ ;
Largaespada, DA .
NATURE, 2005, 436 (7048) :272-276