Particle Swarm Optimization: Dynamic Parameter Adjustment Using Swarm Activity

被引:0
|
作者
Iwasaki, Nobuhiro [1 ]
Yasuda, Keiichiro [1 ]
Ueno, Genki [1 ]
机构
[1] Tokyo Metropolitan Univ, Grad Sch Sci & Engn, Dept Elect & Elect Engn, Hachioji, Tokyo 1920397, Japan
关键词
Swarm Intelligence; Metaheuristics; Global Optimization; Particle Swarm Optimization; Parameter Adjustment;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, swarm activity, which is a new index for assessing the diversification (global search) and intensification (local search) during Particle Swarm Optimization (PSO) searches, is introduced. It is shown that swarm activity allows the quantitative assessment of the diversification and intensification during the PSO search. Using this concept, a new PSO called Activity Feedback PSO (AFPSO) is constructed, which involves feedback based on swarm activity to control diversification and intensification during the search. For each of the 5 benchmark problems, this method is used to determine the globally optimal solutions. These numerical experiments show that AFPSO has generality and effectiveness.
引用
收藏
页码:2633 / 2638
页数:6
相关论文
共 50 条
  • [41] An Adaptive Particle Swarm Optimization for Engine Parameter Optimization
    Dongmei Wu
    Hao Gao
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2018, 88 : 121 - 128
  • [42] Cutting Parameter Optimization Based on particle swarm optimization
    Xi, Junmei
    Liao, Gaohua
    ICICTA: 2009 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL I, PROCEEDINGS, 2009, : 255 - 258
  • [43] An Adaptive Particle Swarm Optimization for Engine Parameter Optimization
    Wu, Dongmei
    Gao, Hao
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2018, 88 (01) : 121 - 128
  • [44] Study on parameter effect of particle swarm optimization
    Liu Chao-wei
    Huang De-xian
    PROCEEDINGS OF 2004 CHINESE CONTROL AND DECISION CONFERENCE, 2004, : 215 - +
  • [45] Research on particle swarm optimization of variable parameter
    Li, Zhe
    Tan, Ruilian
    Ren, Baoxiang
    ADVANCES ON P2P, PARALLEL, GRID, CLOUD AND INTERNET COMPUTING, 2017, 1 : 25 - 33
  • [46] The novel parameter selection of Particle swarm optimization
    Li, Zhuo
    Qu, Xueluo
    ADVANCED MECHANICAL DESIGN, PTS 1-3, 2012, 479-481 : 344 - +
  • [47] Parameter Evolution for a Particle Swarm Optimization Algorithm
    Zhou, Aimin
    Zhang, Guixu
    Konstantinidis, Andreas
    ADVANCES IN COMPUTATION AND INTELLIGENCE, 2010, 6382 : 33 - +
  • [48] Parameter analysis of particle swarm optimization algorithm
    Yao, Yao-Zhong
    Xu, Yu-Ru
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2007, 28 (11): : 1242 - 1246
  • [49] Enhancing federated learning with dynamic weight adjustment based on particle swarm optimization
    Ouyang, Chengtian
    Li, Yehong
    Mao, Jihong
    Zhu, Donglin
    Zhou, Changjun
    Xu, Zhenyu
    DISCOVER COMPUTING, 2024, 27 (01)
  • [50] Optimization of dynamic parameter design of Stewart platform with Particle Swarm Optimization (PSO) algorithm
    Shahbazi, Masood
    Heidari, Mohammadreza
    Ahmadzadeh, Milad
    ADVANCES IN MECHANICAL ENGINEERING, 2024, 16 (06)