Particle Swarm Optimization: Dynamic Parameter Adjustment Using Swarm Activity

被引:0
|
作者
Iwasaki, Nobuhiro [1 ]
Yasuda, Keiichiro [1 ]
Ueno, Genki [1 ]
机构
[1] Tokyo Metropolitan Univ, Grad Sch Sci & Engn, Dept Elect & Elect Engn, Hachioji, Tokyo 1920397, Japan
关键词
Swarm Intelligence; Metaheuristics; Global Optimization; Particle Swarm Optimization; Parameter Adjustment;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, swarm activity, which is a new index for assessing the diversification (global search) and intensification (local search) during Particle Swarm Optimization (PSO) searches, is introduced. It is shown that swarm activity allows the quantitative assessment of the diversification and intensification during the PSO search. Using this concept, a new PSO called Activity Feedback PSO (AFPSO) is constructed, which involves feedback based on swarm activity to control diversification and intensification during the search. For each of the 5 benchmark problems, this method is used to determine the globally optimal solutions. These numerical experiments show that AFPSO has generality and effectiveness.
引用
收藏
页码:2633 / 2638
页数:6
相关论文
共 50 条
  • [21] Creating dynamic panorama using particle swarm optimization
    Zhang, Yan
    Sun, Zhengxing
    Li, Wenhui
    ADVANCES IN ARTIFICIAL REALITY AND TELE-EXISTENCE, PROCEEDINGS, 2006, 4282 : 676 - +
  • [22] Electrochemical machining process parameter optimization using particle swarm optimization
    Jegan, Thankaraj Mariapushpam Chenthil
    Ravindran, Durairaj
    COMPUTATIONAL INTELLIGENCE, 2017, 33 (04) : 1019 - 1037
  • [23] Niching for dynamic environments using particle swarm optimization
    Schoeman, Isabella
    Engelbrecht, Andries
    SIMULATED EVOLUTION AND LEARNING, PROCEEDINGS, 2006, 4247 : 134 - 141
  • [24] Control Parameter Optimization for a Microgrid System Using Particle Swarm Optimization
    Chung, Il-Yop
    Liu, Wenxin
    Cartes, David A.
    Schoder, Karl
    2008 IEEE INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY TECHNOLOGIES (ICSET), VOLS 1 AND 2, 2008, : 837 - 842
  • [25] Dynamic clustering using combinatorial particle swarm optimization
    Hamid Masoud
    Saeed Jalili
    Seyed Mohammad Hossein Hasheminejad
    Applied Intelligence, 2013, 38 : 289 - 314
  • [26] Particle swarm optimization using dynamic tournament topology
    Wang, Lin
    Yang, Bo
    Orchard, Jeff
    APPLIED SOFT COMPUTING, 2016, 48 : 584 - 596
  • [27] Parameter Determination of Dynamic Sensor Model with Particle Swarm Optimization Technique
    Wang, Xiaodong
    2009 INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION, VOL I, 2009, : 43 - 46
  • [28] Approximate dynamic programming based parameter optimization of particle swarm systems
    Kang Q.
    Wang L.
    An J.
    Wu Q.-D.
    Zidonghua Xuebao/Acta Automatica Sinica, 2010, 36 (08): : 1171 - 1181
  • [29] Dynamic Multi-swarm Global Particle Swarm Optimization
    Tang, Yichao
    Li, Xiong
    Zhang, Yinglong
    Xia, Xuewen
    Gui, Ling
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 1030 - 1037
  • [30] Parameter extraction of solar cells using particle swarm optimization
    Ye, Meiying
    Wang, Xiaodong
    Xu, Yousheng
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (09)