Particle Swarm Optimization: Dynamic Parameter Adjustment Using Swarm Activity

被引:0
|
作者
Iwasaki, Nobuhiro [1 ]
Yasuda, Keiichiro [1 ]
Ueno, Genki [1 ]
机构
[1] Tokyo Metropolitan Univ, Grad Sch Sci & Engn, Dept Elect & Elect Engn, Hachioji, Tokyo 1920397, Japan
来源
2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6 | 2008年
关键词
Swarm Intelligence; Metaheuristics; Global Optimization; Particle Swarm Optimization; Parameter Adjustment;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, swarm activity, which is a new index for assessing the diversification (global search) and intensification (local search) during Particle Swarm Optimization (PSO) searches, is introduced. It is shown that swarm activity allows the quantitative assessment of the diversification and intensification during the PSO search. Using this concept, a new PSO called Activity Feedback PSO (AFPSO) is constructed, which involves feedback based on swarm activity to control diversification and intensification during the search. For each of the 5 benchmark problems, this method is used to determine the globally optimal solutions. These numerical experiments show that AFPSO has generality and effectiveness.
引用
收藏
页码:2633 / 2638
页数:6
相关论文
共 50 条
  • [21] Particle swarm optimization using dynamic tournament topology
    Wang, Lin
    Yang, Bo
    Orchard, Jeff
    APPLIED SOFT COMPUTING, 2016, 48 : 584 - 596
  • [22] Particle Swarm Optimization - A Survey
    Kameyama, Keisuke
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2009, E92D (07) : 1354 - 1361
  • [23] Parameter Determination of Dynamic Sensor Model with Particle Swarm Optimization Technique
    Wang, Xiaodong
    2009 INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION, VOL I, 2009, : 43 - 46
  • [24] Dynamic Multi-swarm Global Particle Swarm Optimization
    Tang, Yichao
    Li, Xiong
    Zhang, Yinglong
    Xia, Xuewen
    Gui, Ling
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 1030 - 1037
  • [25] Dynamic Multi-Swarm Particle Swarm Optimization Based on Elite Learning
    Xia, Xuewen
    Tang, Yichao
    Wei, Bo
    Gui, Ling
    IEEE ACCESS, 2019, 7 : 184849 - 184865
  • [26] Dynamic multi-swarm global particle swarm optimization
    Xuewen Xia
    Yichao Tang
    Bo Wei
    Yinglong Zhang
    Ling Gui
    Xiong Li
    Computing, 2020, 102 : 1587 - 1626
  • [27] PARAMETER ESTIMATION TO AN ANEMIA MODEL USING THE PARTICLE SWARM OPTIMIZATION
    Ahmad, Arshed A.
    Sari, Murat
    SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI, 2019, 37 (04): : 1331 - 1343
  • [28] Approximate dynamic programming based parameter optimization of particle swarm systems
    Kang Q.
    Wang L.
    An J.
    Wu Q.-D.
    Zidonghua Xuebao/Acta Automatica Sinica, 2010, 36 (08): : 1171 - 1181
  • [29] PARAMETER OPTIMIZATION OF THE FORGING AND FORMING PROCESS USING PARTICLE SWARM OPTIMIZATION
    Li N.
    International Journal of Mechatronics and Applied Mechanics, 2022, 2022 (11): : 249 - 258
  • [30] Dynamic multi-swarm global particle swarm optimization
    Xia, Xuewen
    Tang, Yichao
    Wei, Bo
    Zhang, Yinglong
    Gui, Ling
    Li, Xiong
    COMPUTING, 2020, 102 (07) : 1587 - 1626