Particle Swarm Optimization: Dynamic Parameter Adjustment Using Swarm Activity

被引:0
|
作者
Iwasaki, Nobuhiro [1 ]
Yasuda, Keiichiro [1 ]
Ueno, Genki [1 ]
机构
[1] Tokyo Metropolitan Univ, Grad Sch Sci & Engn, Dept Elect & Elect Engn, Hachioji, Tokyo 1920397, Japan
来源
2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6 | 2008年
关键词
Swarm Intelligence; Metaheuristics; Global Optimization; Particle Swarm Optimization; Parameter Adjustment;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, swarm activity, which is a new index for assessing the diversification (global search) and intensification (local search) during Particle Swarm Optimization (PSO) searches, is introduced. It is shown that swarm activity allows the quantitative assessment of the diversification and intensification during the PSO search. Using this concept, a new PSO called Activity Feedback PSO (AFPSO) is constructed, which involves feedback based on swarm activity to control diversification and intensification during the search. For each of the 5 benchmark problems, this method is used to determine the globally optimal solutions. These numerical experiments show that AFPSO has generality and effectiveness.
引用
收藏
页码:2633 / 2638
页数:6
相关论文
共 50 条
  • [1] Particle Swarm Optimization: A Numerical Stability Analysis and Parameter Adjustment Based on Swarm Activity
    Yasuda, Keiichiro
    Iwasaki, Nobuhiro
    Ueno, Genki
    Aiyoshi, Eitaro
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2008, 3 (06) : 642 - 659
  • [2] Dynamic parameter tuning of particle swarm optimization
    Iwasaki, Nobuhiro
    Yasuda, Keiichiro
    Ueno, Genki
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2006, 1 (04) : 353 - 363
  • [3] The Impact of Dynamic Adjustment of Swarm Behavior on Particle Swarm Optimization Performance using Benchmark Functions
    Ab Wahab, Mohd Nadhir
    Nefti-Meziani, Samia
    Atyabi, Adham
    2023 IEEE 13TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE, CCWC, 2023, : 759 - 767
  • [4] A Particle Swarm Optimization Based on Dynamic Parameter Modification
    Zhang, Yingchao
    Xiong, Xiong
    Chen, Chao
    Huang, Xinyi
    ADVANCES IN SCIENCE AND ENGINEERING, PTS 1 AND 2, 2011, 40-41 : 201 - +
  • [5] The Impact of Parameter Adjustment Strategies on the Performance of Particle Swarm Optimization Algorithm
    Zhang Xun
    Li Juelong
    Xing Jianchun
    Wang Ping
    Yang Qiliang
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 5206 - 5211
  • [6] Adaptive particle swarm optimization using velocity feedback
    Iwasaki, Nobuhiro
    Yasuda, Keiichiro
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2005, 1 (03): : 369 - 380
  • [7] Parameter identification of nonlinear dynamic systems using an improved particle swarm optimization
    Zheng, Yu-xin
    Liao, Ying
    OPTIK, 2016, 127 (19): : 7865 - 7874
  • [8] The novel parameter selection of Particle swarm optimization
    Li, Zhuo
    Qu, Xueluo
    ADVANCED MECHANICAL DESIGN, PTS 1-3, 2012, 479-481 : 344 - +
  • [9] Particle Swarm Optimization with Parameter Self-Adjusting Mechanism
    Yasuda, Keiichiro
    Yazawa, Kazuyuki
    Motoki, Makoto
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2010, 5 (02) : 256 - 257
  • [10] Parameter identification of a cage induction motor using particle swarm optimization
    Nikranajbar, A.
    Ebrahimi, M. K.
    Wood, A. S.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2010, 224 (I5) : 479 - 491