Particle Swarm Optimization: Dynamic Parameter Adjustment Using Swarm Activity

被引:0
|
作者
Iwasaki, Nobuhiro [1 ]
Yasuda, Keiichiro [1 ]
Ueno, Genki [1 ]
机构
[1] Tokyo Metropolitan Univ, Grad Sch Sci & Engn, Dept Elect & Elect Engn, Hachioji, Tokyo 1920397, Japan
关键词
Swarm Intelligence; Metaheuristics; Global Optimization; Particle Swarm Optimization; Parameter Adjustment;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, swarm activity, which is a new index for assessing the diversification (global search) and intensification (local search) during Particle Swarm Optimization (PSO) searches, is introduced. It is shown that swarm activity allows the quantitative assessment of the diversification and intensification during the PSO search. Using this concept, a new PSO called Activity Feedback PSO (AFPSO) is constructed, which involves feedback based on swarm activity to control diversification and intensification during the search. For each of the 5 benchmark problems, this method is used to determine the globally optimal solutions. These numerical experiments show that AFPSO has generality and effectiveness.
引用
收藏
页码:2633 / 2638
页数:6
相关论文
共 50 条
  • [1] Particle Swarm Optimization: A Numerical Stability Analysis and Parameter Adjustment Based on Swarm Activity
    Yasuda, Keiichiro
    Iwasaki, Nobuhiro
    Ueno, Genki
    Aiyoshi, Eitaro
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2008, 3 (06) : 642 - 659
  • [2] Particle swarm optimization algorithm using dynamic neighborhood adjustment
    Chen, Zi-Yu
    He, Zhong-Shi
    Zhang, Cheng
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2010, 23 (04): : 586 - 592
  • [3] Dynamic parameter tuning of particle swarm optimization
    Iwasaki, Nobuhiro
    Yasuda, Keiichiro
    Ueno, Genki
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2006, 1 (04) : 353 - 363
  • [4] The Impact of Dynamic Adjustment of Swarm Behavior on Particle Swarm Optimization Performance using Benchmark Functions
    Ab Wahab, Mohd Nadhir
    Nefti-Meziani, Samia
    Atyabi, Adham
    2023 IEEE 13TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE, CCWC, 2023, : 759 - 767
  • [5] A Particle Swarm Optimization Based on Dynamic Parameter Modification
    Zhang, Yingchao
    Xiong, Xiong
    Chen, Chao
    Huang, Xinyi
    ADVANCES IN SCIENCE AND ENGINEERING, PTS 1 AND 2, 2011, 40-41 : 201 - +
  • [6] Stability analysis of particle swarm optimization using swarm activity
    Su, Shou-Bao
    Cao, Xi-Bin
    Kong, Min
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2010, 27 (10): : 1411 - 1417
  • [7] The Impact of Parameter Adjustment Strategies on the Performance of Particle Swarm Optimization Algorithm
    Zhang Xun
    Li Juelong
    Xing Jianchun
    Wang Ping
    Yang Qiliang
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 5206 - 5211
  • [8] Parameter identification of nonlinear dynamic systems using an improved particle swarm optimization
    Zheng, Yu-xin
    Liao, Ying
    OPTIK, 2016, 127 (19): : 7865 - 7874
  • [9] Parameter Estimation of an Induction Machine using a Dynamic Particle Swarm Optimization Algorithm
    Huynh, Duy C.
    Dunnigan, Matthew W.
    IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE 2010), 2010, : 1414 - 1419
  • [10] Cosmological parameter estimation using Particle Swarm Optimization
    Prasad, J.
    Souradeep, T.
    VISHWA MIMANSA: AN INTERPRETATIVE EXPOSITION OF THE UNIVERSE. PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON GRAVITATION AND COSMOLOGY, 2014, 484