The Maximal Lactate Steady State Workload Determines Individual Swimming Performance

被引:3
|
作者
Hering, Gernot O. [1 ]
Stepan, Jens [1 ,2 ]
机构
[1] Univ Konstanz, Dept Sport & Hlth Sci, Constance, Germany
[2] Paracelsus Med Univ, Dept Obstet & Gynaecol, Salzburg, Austria
来源
FRONTIERS IN PHYSIOLOGY | 2021年 / 12卷
关键词
lactate threshold; maximal lactate steady state; swimming; performance testing; exercise physiology; MUSCLE-FIBER TYPES; SKELETAL-MUSCLE; EXERCISE INTENSITY; ARM COORDINATION; FORCE PRODUCTION; ATP UTILIZATION; CALCIUM-UPTAKE; EFFICIENCY; THRESHOLD; KINETICS;
D O I
10.3389/fphys.2021.668123
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
The lactate threshold (LT) and the strongly related maximal lactate steady state workload (MLSSW) are critical for physical endurance capacity and therefore of major interest in numerous sports. However, their relevance to individual swimming performance is not well understood. We used a custom-made visual light pacer for real-time speed modulation during front crawl to determine the LT and MLSSW in a single-exercise test. When approaching the LT, we found that minute variations in swimming speed had considerable effects on blood lactate concentration ([La-]). The LT was characterized by a sudden increase in [La-], while the MLSSW occurred after a subsequent workload reduction, as indicated by a rapid cessation of blood lactate accumulation. Determination of the MLSSW by this so-called "individual lactate threshold" (ILT)-test was highly reproducible and valid in a constant speed test. Mean swimming speed in 800 and 1,500 m competition (S-Comp) was 3.4% above MLSSW level and S-Comp, and the difference between S-Comp and the MLSSW (Delta S-Comp/MLSSW) were higher for long-distance swimmers (800-1,500 m) than for short- and middle-distance swimmers (50-400 m). Moreover, Delta S-Comp/MLSSW varied significantly between subjects and had a strong influence on overall swimming performance. Our results demonstrate that the MLSSW determines individual swimming performance, reflects endurance capacity in the sub- to supra-threshold range, and is therefore appropriate to adjust training intensity in moderate to severe domains of exercise.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] ANAEROBIC THRESHOLD, INDIVIDUAL ANAEROBIC THRESHOLD, AND MAXIMAL LACTATE STEADY-STATE IN ROWING
    BENEKE, R
    MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 1995, 27 (06): : 863 - 867
  • [22] Individual anaerobic threshold estimates maximal lactate steady state in temperate and hot climate
    Monteiro De Barros, Cristiano L.
    Mendes, Thiago T.
    De Avila Castro Fleury Mortimer, Lucas
    Passos Ramos, Guilherme
    Silami Garcia, Emerson
    JOURNAL OF SPORTS MEDICINE AND PHYSICAL FITNESS, 2016, 56 (1-2): : 27 - 33
  • [23] Reliability of Maximal Lactate-Steady-State
    Hauser, T.
    Bartsch, D.
    Baumgaertel, L.
    Schulz, H.
    INTERNATIONAL JOURNAL OF SPORTS MEDICINE, 2013, 34 (03) : 196 - 199
  • [24] The origin of the maximal lactate steady state (MLSS)
    Heck, Hermann
    Wackerhage, Henning
    BMC SPORTS SCIENCE MEDICINE AND REHABILITATION, 2024, 16 (01)
  • [25] Effect of recovery on the maximal lactate steady state
    de Souza, Mariana Rosada
    Barbosa, Luis Fabiano
    Correa Carita, Renato Aparecido
    Denadai, Benedito Sergio
    Greco, Camila Coelho
    MOTRIZ-REVISTA DE EDUCACAO FISICA, 2011, 17 (02): : 311 - 317
  • [26] Maximal Lactate Steady-State Prediction
    Tiago R. Figueira
    Herbert G. Simões
    Benedito S. Denadai
    Sports Medicine, 2010, 40 : 179 - 180
  • [27] The origin of the maximal lactate steady state (MLSS)
    Hermann Heck
    Henning Wackerhage
    BMC Sports Science, Medicine and Rehabilitation, 16
  • [28] Maximal Lactate Steady-State Prediction
    Figueira, Tiago R.
    Simoes, Herbert G.
    Denadai, Benedito S.
    SPORTS MEDICINE, 2010, 40 (02) : 179 - 180
  • [29] Maximal lactate steady state as a training stimulus
    Philp, A.
    Macdonald, A. L.
    Carter, H.
    Watt, P. W.
    Pringle, J. S.
    INTERNATIONAL JOURNAL OF SPORTS MEDICINE, 2008, 29 (06) : 475 - 479
  • [30] Maximal Lactate Steady State is Altered in the Heat
    de Barros, C. L. M.
    Mendes, T. T.
    Mortimer, L. A. C. F.
    Simoes, H. G.
    Prado, L. S.
    Wisloff, U.
    Silami-Garcia, E.
    INTERNATIONAL JOURNAL OF SPORTS MEDICINE, 2011, 32 (10) : 749 - 753