Wide Bandgap Sb2S3 Solar Cells

被引:135
作者
Shah, Usman Ali [1 ,2 ]
Chen, Shiwu [1 ,2 ]
Khalaf, Gomaa Mohamed Gomaa [1 ,2 ,3 ]
Jin, Zhixin [1 ,2 ,4 ]
Song, Haisheng [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol HUST, Wuhan Natl Lab Optoelect WNLO, 1037 Luoyu Rd, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol HUST, Sch Opt & Elect Informat, 1037 Luoyu Rd, Wuhan 430074, Hubei, Peoples R China
[3] Natl Res Inst Astron & Geophys NRIAG, EL Marsad St 1, Cairo, Egypt
[4] Yanshan Univ, Sch Sci, Qinhuangdao 066012, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
loss mechanism; power conversion efficiency; Sb; S-2; (3); Shockley– Queisser limit; tandem solar cells; thin film quality; ENHANCED PHOTOVOLTAIC PERFORMANCE; CHARGE-CARRIER RECOMBINATION; MULTIPLE-EXCITON GENERATION; HOLE-TRANSPORTING MATERIALS; HALIDE DOUBLE PEROVSKITES; CHEMICAL BATH DEPOSITION; SPIN-COATING PROCESS; SULFIDE THIN-FILMS; OPTICAL-PROPERTIES; SINGLE JUNCTION;
D O I
10.1002/adfm.202100265
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The wide bandgap Sb2S3 is considered to be one of the most promising absorber layers in single-junction solar cells and a suitable top-cell candidate for multi-junction (tandem) solar cells. However, compared to mature thin-film technologies, Sb2S3 based thin-film solar cells are still lagging behind in the power conversion efficiency race, and the highest of just 7.5% has been achieved to date in a sensitized single-junction structure. Furthermore, to break single junction solar cell based Shockley-Queisser (S-Q) limits, tandem devices with wide bandgap top-cells and low bandgap bottom-cells hold a high potential for efficient light conversion. Though matured and desirable bottom-cell candidates like silicon (Si) are available, the corresponding mature wide bandgap top-cell candidates are still lacking. Hence, a literature review based on Sb2S3 solar cells is urgently warranted. In this review, the progress and present status of Sb2S3 solar cells are summarized. An emphasis is placed mainly on the improvement of absorber quality and device performance. Moreover, the low-performance causes and possible overcoming mechanisms are also explained. Last but not least, the potential and feasibility of Sb2S3 in tandem devices are vividly discussed. In the end, several strategies and perspectives for future research are outlined.
引用
收藏
页数:28
相关论文
共 189 条
  • [91] Efficient planar Sb2S3 solar cells using a low-temperature solution-processed tin oxide electron conductor
    Lei, Hongwei
    Yang, Guang
    Guo, Yaxiong
    Xiong, Liangbin
    Qin, Pingli
    Dai, Xin
    Zheng, Xiaolu
    Ke, Weijun
    Tao, Hong
    Chen, Zhao
    Li, Borui
    Fang, Guojia
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (24) : 16436 - 16443
  • [92] Toward cost-effective solar energy use
    Lewis, Nathan S.
    [J]. SCIENCE, 2007, 315 (5813) : 798 - 801
  • [93] Introduction of PCPDTBT in P3HT:Spiro-OMeTAD blending system for solid-state hybrid solar cells with dendritic TiO2/Sb2S3 nanorods composite film
    Li, Yingpin
    Wei, Yanan
    Feng, Kangning
    Hao, Yanzhong
    Pei, Juan
    Zhang, Yumei
    Sun, Bao
    [J]. JOURNAL OF SOLID STATE CHEMISTRY, 2019, 276 : 278 - 284
  • [94] 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells
    Li, Zhiqiang
    Liang, Xiaoyang
    Li, Gang
    Liu, Haixu
    Zhang, Huiyu
    Guo, Jianxin
    Chen, Jingwei
    Shen, Kai
    San, Xingyuan
    Yu, Wei
    Schropp, Ruud E. I.
    Mai, Yaohua
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [95] Enhancing the device performance of Sb2S3-sensitized heterojunction solar cells by embedding Au nanoparticles in the hole-conducting polymer layer
    Lim, Choong-Sun
    Im, Sang Hyuk
    Kim, Hi-jung
    Chang, Jeong Ah
    Lee, Yong Hui
    Seok, Sang Il
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (10) : 3622 - 3626
  • [96] Enhanced sub-bandgap efficiency of a solid-state organic intermediate band solar cell using triplet-triplet annihilation
    Lin, YunHui L.
    Koch, Marius
    Brigeman, Alyssa N.
    Freeman, David M. E.
    Zhao, Lianfeng
    Bronstein, Hugo
    Giebink, Noel C.
    Scholes, Gregory D.
    Rand, Barry P.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (06) : 1465 - 1475
  • [97] Enhanced performance by incorporation of zinc oxide nanowire array for organic-inorganic hybrid solar cells
    Liu, C. P.
    Chen, Z. H.
    Wang, H. E.
    Jha, S. K.
    Zhang, W. J.
    Bello, I.
    Zapien, J. A.
    [J]. APPLIED PHYSICS LETTERS, 2012, 100 (24)
  • [98] Hybrid photovoltaic cells based on ZnO/Sb2S3/P3HT heterojunctions
    Liu, C. P.
    Wang, H. E.
    Ng, T. W.
    Chen, Z. H.
    Zhang, W. F.
    Yan, C.
    Tang, Y. B.
    Bello, I.
    Martinu, L.
    Zhang, W. J.
    Jha, S. K.
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2012, 249 (03): : 627 - 633
  • [99] Current improvement in substrate structured Sb2S3 solar cells with MoSe2 interlayer
    Liu, Lu
    Zhang, Sheng-Li
    Wu, Jian-Yu
    Wang, Wei-Huang
    Liu, Wei
    Wu, Li
    Zhang, Yi
    [J]. CHINESE PHYSICS B, 2020, 29 (05)
  • [100] A green and facile hydrothermal approach for the synthesis of high-quality semi-conducting Sb2S3 thin films
    Liu, Meng
    Gong, Yongshuai
    Li, Zhilin
    Dou, Meiling
    Wang, Feng
    [J]. APPLIED SURFACE SCIENCE, 2016, 387 : 790 - 795