Hydrogenated graphene: Important material properties regarding its application for hydrogen storage

被引:35
作者
Morse, James R. [1 ]
Zugell, David A. [2 ]
Patterson, Eric [1 ]
Baldwin, Jeffrey W. [3 ]
Willauer, Heather D. [1 ]
机构
[1] Naval Res Lab, Mat Sci & Technol Div, Washington, DC 20375 USA
[2] Naval Res Lab, ASEE Postdoctoral Res Associate, Mat Sci & Technol Div, Washington, DC 20375 USA
[3] Naval Res Lab, Acoust Div, Washington, DC 20375 USA
关键词
Graphane; Hydrogenated graphene; Hydrogen storage; Solid-state hydrogen storage; BIRCH REDUCTION; KINETICS; METAL; TEMPERATURE; GRAPHITE; HYDRIDES; ENERGY;
D O I
10.1016/j.jpowsour.2021.229734
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Chemically hydrogenated graphene possesses a theoretical hydrogen storage capacity of 7.7 wt%, and will release H2 gas upon thermal decomposition, making it an intriguing material for hydrogen storage applications. Recent works have demonstrated that this material can be synthesized at multi-gram scale quantities, and it has already been safely demonstrated as a hydrogen source to power a PEM fuel cell. While these results are promising, further characterization and evaluation of this material as it pertains to hydrogen storage must be carried out. In this work, we characterize various properties of chemically hydrogenated graphene, which will be key in the application of this material as a hydrogen storage medium moving forward. These include: theoretical calculation of the material?s total volumetric energy density, the dependence of both temperature and surrounding atmosphere on the release of hydrogen gas, thermal expansion of the material upon heating, and the activation energy associated with hydrogen release.
引用
收藏
页数:8
相关论文
共 49 条
[1]   Hydrogen energy, economy and storage: Review and recommendation [J].
Abe, J. O. ;
Popoola, A. P. I. ;
Ajenifuja, E. ;
Popoola, O. M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (29) :15072-15086
[2]   An assessment of strategies for the development of solid-state adsorbents for vehicular hydrogen storage [J].
Allendorf, Mark D. ;
Hulvey, Zeric ;
Gennett, Thomas ;
Ahmed, Alauddin ;
Autrey, Tom ;
Camp, Jeffrey ;
Cho, Eun Seon ;
Furukawa, Hiroyasu ;
Haranczyk, Maciej ;
Head-Gordon, Martin ;
Jeong, Sohee ;
Karkamkar, Abhi ;
Liu, Di-Jia ;
Long, Jeffrey R. ;
Meihaus, Katie R. ;
Nayyar, Iffat H. ;
Nazarov, Roman ;
Siegel, Donald J. ;
Stavila, Vitalie ;
Urban, Jeffrey J. ;
Veccham, Srimukh Prasad ;
Wood, Brandon C. .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (10) :2784-2812
[3]   Dehydrogenation kinetics of as-received and ball-milled LiAlH4 [J].
Andreasen, A ;
Vegge, T ;
Pedersen, AS .
JOURNAL OF SOLID STATE CHEMISTRY, 2005, 178 (12) :3672-3678
[4]  
[Anonymous], 2019, TECHNICAL TARGETS ON
[5]   Hydrogen storage: Recent improvements and industrial perspectives [J].
Barthelemy, H. ;
Weber, M. ;
Barbier, F. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (11) :7254-7262
[6]   Nanosized graphane (C1H1.14)n by hydrogenation of carbon nanofibers by Birch reduction method [J].
Bousa, Daniel ;
Luxa, Jan ;
Sedmidubsky, David ;
Huber, Stepan ;
Jankovsky, Ondrej ;
Pumera, Martin ;
Sofer, Zdenek .
RSC ADVANCES, 2016, 6 (08) :6475-6485
[7]  
Constable RT, 2006, FUNCTIONAL MRI: BASIC PRINCIPLES AND CLINICAL APPLICATIONS, P75, DOI 10.1007/0-387-34665-1_4
[8]   Review of hydrogen storage techniques for on board vehicle applications [J].
Durbin, D. J. ;
Malardier-Jugroot, C. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (34) :14595-14617
[9]   THE GENERAL APPLICABILITY OF THE KISSINGER EQUATION IN THERMAL-ANALYSIS [J].
ELDER, JP .
JOURNAL OF THERMAL ANALYSIS, 1985, 30 (03) :657-669
[10]   Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane [J].
Elias, D. C. ;
Nair, R. R. ;
Mohiuddin, T. M. G. ;
Morozov, S. V. ;
Blake, P. ;
Halsall, M. P. ;
Ferrari, A. C. ;
Boukhvalov, D. W. ;
Katsnelson, M. I. ;
Geim, A. K. ;
Novoselov, K. S. .
SCIENCE, 2009, 323 (5914) :610-613