Bayesian estimation of the seroprevalence of antibodies to SARS-CoV-2

被引:4
作者
Dong, Qunfeng [1 ,2 ]
Gao, Xiang [1 ]
机构
[1] Loyola Univ Chicago, Stritch Sch Med, Dept Med, 2160 S First Ave, Maywood, IL 60153 USA
[2] Loyola Univ Chicago, Ctr Biomed Informat, Stritch Sch Med, Maywood, IL 60153 USA
关键词
COVID-19; SARS-CoV-2; antibody test; Bayesian; specificity; sensitivity; COVID-19;
D O I
10.1093/jamiaopen/ooaa049
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Accurate estimations of the seroprevalence of antibodies to severe acute respiratory syndrome coronavirus 2 need to properly consider the specificity and sensitivity of the antibody tests. In addition, prior knowledge of the extent of viral infection in a population may also be important for adjusting the estimation of seroprevalence. For this purpose, we have developed a Bayesian approach that can incorporate the variabilities of specificity and sensitivity of the antibody tests, as well as the prior probability distribution of seroprevalence. We have demonstrated the utility of our approach by applying it to a recently published large-scale dataset from the US CDC, with our results providing entire probability distributions of seroprevalence instead of single-point estimates.
引用
收藏
页码:496 / 499
页数:4
相关论文
共 14 条
  • [1] The Promise and Peril of Antibody Testing for COVID-19
    Abbasi, Jennifer
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2020, 323 (19): : 1881 - 1883
  • [2] What policy makers need to know about COVID-19 protective immunity
    Altmann, Daniel M.
    Douek, Daniel C.
    Boyton, Rosemary J.
    [J]. LANCET, 2020, 395 (10236) : 1527 - 1529
  • [3] Freeman Brandi, 2020, bioRxiv, DOI 10.1101/2020.04.24.057323
  • [4] Gelman A., 2013, BAYESIAN DATA ANAL, DOI DOI 10.1201/B16018
  • [5] Gelman A., 1992, Stat. Sci., V7, P457, DOI [10.1214/ss/1177011136, DOI 10.1214/SS/1177011136]
  • [6] Seroprevalence of Antibodies to SARS-CoV-2 in 10 Sites in the United States, March 23-May 12, 2020
    Havers, Fiona P.
    Reed, Carrie
    Lim, Travis
    Montgomery, Joel M.
    Klena, John D.
    Hall, Aron J.
    Fry, Alicia M.
    Cannon, Deborah L.
    Chiang, Cheng-Feng
    Gibbons, Aridth
    Krapiunaya, Inna
    Morales-Betoulle, Maria
    Roguski, Katherine
    Rasheed, Mohammad Ata Ur
    Freeman, Brandi
    Lester, Sandra
    Mills, Lisa
    Carroll, Darin S.
    Owen, S. Michele
    Johnson, Jeffrey A.
    Semenova, Vera
    Blackmore, Carina
    Blog, Debra
    Chai, Shua J.
    Dunn, Angela
    Hand, Julie
    Jain, Seema
    Lindquist, Scott
    Lynfield, Ruth
    Pritchard, Scott
    Sokol, Theresa
    Sosa, Lynn
    Turabelidze, George
    Watkins, Sharon M.
    Wiesman, John
    Williams, Randall W.
    Yendell, Stephanie
    Schiffer, Jarad
    Thornburg, Natalie J.
    [J]. JAMA INTERNAL MEDICINE, 2020, 180 (12) : 1576 - 1586
  • [7] Understanding and interpreting confidence and credible intervals around effect estimates
    Hespanhol, Luiz
    Vallio, Caio Sain
    Costa, Luciola Menezes
    Saragiotto, Bruno T.
    [J]. BRAZILIAN JOURNAL OF PHYSICAL THERAPY, 2019, 23 (04) : 290 - 301
  • [8] Test, test, test for COVID-19 antibodies: the importance of sensitivity, specificity and predictive powers
    Kumleben, N.
    Bhopal, R.
    Czypionka, T.
    Gruer, L.
    Kock, R.
    Stebbing, J.
    Stigler, F. L.
    [J]. PUBLIC HEALTH, 2020, 185 : 88 - 90
  • [9] Lunn D., 2013, The BUGS book: A practical introduction to Bayesian analysis
  • [10] WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility
    Lunn, DJ
    Thomas, A
    Best, N
    Spiegelhalter, D
    [J]. STATISTICS AND COMPUTING, 2000, 10 (04) : 325 - 337