Data mining;
One-day-ahead prediction;
Hourly global solar radiation;
Expert systems;
CLASSIFICATION;
MODEL;
ANN;
D O I:
10.1016/j.eswa.2020.114147
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
A new methodology to predict one-day-ahead hourly solar global radiation is proposed in this paper. This information is very useful to address many real problems; for instance, energy-market decision making is one of the contexts where that information is essential to ensure the correct integration of grid-connected photovoltaic solar systems. The developed methodology is based on the contribution of different experts to obtain improved data-driven models when included in the data mining process. The modelling phase, when models are induced and new patterns can be identified, is the one that most benefits from that expert knowledge. In this case, it is achieved by combining clustering, regression and classification methods that exploit meteorological data (directly measured or predicted by weather services). The developed models have been embedded in a prediction system that offers reliable forecasts on next-day hourly global solar radiation. As a result of the automatic learning process including the knowledge of different experts, 14 different types of day were identified based on the shape of hourly solar radiation throughout a day. The conventional definitions of types of days, that usually consider 4 options, are updated with this new proposal. The next-day prediction of hourly global radiation is obtained in two phases: in the first one, the next-day type is obtained from among the 14 possible types of day; in the second one, values of hourly global radiation are obtained using the centroid of the predicted type of day and extraterrestrial solar radiation. The relative root mean square error of the prediction model is less than 20%, meaning a significant reduction compared to previous models. Moreover, the proposed models can be recognized in the context of eXplainable Artificial Intelligence.
机构:
Univ Malaya, Dept Informat Syst, Fac Comp Sci & Informat Technol, Kuala Lumpur 50603, MalaysiaUniv Malaya, Dept Informat Syst, Fac Comp Sci & Informat Technol, Kuala Lumpur 50603, Malaysia
Aghabozorgi, Saeed
Shirkhorshidi, Ali Seyed
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaya, Dept Informat Syst, Fac Comp Sci & Informat Technol, Kuala Lumpur 50603, MalaysiaUniv Malaya, Dept Informat Syst, Fac Comp Sci & Informat Technol, Kuala Lumpur 50603, Malaysia
Shirkhorshidi, Ali Seyed
Teh Ying Wah
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaya, Dept Informat Syst, Fac Comp Sci & Informat Technol, Kuala Lumpur 50603, MalaysiaUniv Malaya, Dept Informat Syst, Fac Comp Sci & Informat Technol, Kuala Lumpur 50603, Malaysia
机构:
Deloitte Portugal, Manuel Bandeira St 43, P-4150479 Porto, Portugal
Univ Porto, Fac Engn, Dr Roberto Frias St, P-4200465 Porto, PortugalDeloitte Portugal, Manuel Bandeira St 43, P-4150479 Porto, Portugal
Carvalho, Diogo, V
Pereira, Eduardo M.
论文数: 0引用数: 0
h-index: 0
机构:
Deloitte Portugal, Manuel Bandeira St 43, P-4150479 Porto, PortugalDeloitte Portugal, Manuel Bandeira St 43, P-4150479 Porto, Portugal
Pereira, Eduardo M.
Cardoso, Jaime S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Porto, Fac Engn, Dr Roberto Frias St, P-4200465 Porto, Portugal
INESC TEC, Dr Roberto Frias St, P-4200465 Porto, PortugalDeloitte Portugal, Manuel Bandeira St 43, P-4150479 Porto, Portugal
机构:
Univ Malaya, Dept Informat Syst, Fac Comp Sci & Informat Technol, Kuala Lumpur 50603, MalaysiaUniv Malaya, Dept Informat Syst, Fac Comp Sci & Informat Technol, Kuala Lumpur 50603, Malaysia
Aghabozorgi, Saeed
Shirkhorshidi, Ali Seyed
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaya, Dept Informat Syst, Fac Comp Sci & Informat Technol, Kuala Lumpur 50603, MalaysiaUniv Malaya, Dept Informat Syst, Fac Comp Sci & Informat Technol, Kuala Lumpur 50603, Malaysia
Shirkhorshidi, Ali Seyed
Teh Ying Wah
论文数: 0引用数: 0
h-index: 0
机构:
Univ Malaya, Dept Informat Syst, Fac Comp Sci & Informat Technol, Kuala Lumpur 50603, MalaysiaUniv Malaya, Dept Informat Syst, Fac Comp Sci & Informat Technol, Kuala Lumpur 50603, Malaysia
机构:
Deloitte Portugal, Manuel Bandeira St 43, P-4150479 Porto, Portugal
Univ Porto, Fac Engn, Dr Roberto Frias St, P-4200465 Porto, PortugalDeloitte Portugal, Manuel Bandeira St 43, P-4150479 Porto, Portugal
Carvalho, Diogo, V
Pereira, Eduardo M.
论文数: 0引用数: 0
h-index: 0
机构:
Deloitte Portugal, Manuel Bandeira St 43, P-4150479 Porto, PortugalDeloitte Portugal, Manuel Bandeira St 43, P-4150479 Porto, Portugal
Pereira, Eduardo M.
Cardoso, Jaime S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Porto, Fac Engn, Dr Roberto Frias St, P-4200465 Porto, Portugal
INESC TEC, Dr Roberto Frias St, P-4200465 Porto, PortugalDeloitte Portugal, Manuel Bandeira St 43, P-4150479 Porto, Portugal