QGP phase transition and multiplicity fluctuations

被引:10
作者
Yang, CB
Wang, XR
Cai, X
机构
[1] Institute of Particle Physics, Huazhong Normal University
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY | 1997年 / 40卷 / 10期
关键词
Ginzburg-Landau model; phase transitions; scaled factorial moments; analytical study;
D O I
10.1007/BF03182366
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The scaled factorial moments in QGP phase transitions are studied analytically by the extended Ginzburg-Landau model. The dependence of lnF(q) on phase space interval is different for the first-and second-order QGP phase transitions. When lnF(q) are fitted to polynomials of X drop delta(1/3), the relative sign between the fitted coefficients of X and b(q,1) calculated theoretically can be used to judge the order of phase transitions. Two sets of experimental data are reanalysed and the phase transitions are the first order for one set of data I,ut the second order for another.
引用
收藏
页码:1065 / 1072
页数:8
相关论文
共 23 条
[1]   ON INTERMITTENCY IN HEAVY-ION COLLISIONS AND THE IMPORTANCE OF GAMMA-CONVERSION IN A MULTIDIMENSIONAL INTERMITTENCY ANALYSIS [J].
ADAMOVICH, MI ;
AGGARWAL, MM ;
ALEXANDROV, YA ;
ANDREEVA, NP ;
ANZON, ZV ;
ARORA, R ;
AVETYAN, FA ;
BADYAL, SK ;
BASOVA, E ;
BHALLA, KB ;
BHASIN, A ;
BHATIA, VS ;
BOGDANOV, VG ;
BUBNOV, VI ;
BURNETT, TH ;
CAI, X ;
CHASNIKOV, IY ;
CHERNOVA, LP ;
CHERNYAVSKY, MM ;
ELIGBAEVA, GZ ;
EREMENKO, LE ;
GAITINOV, AS ;
GANSSAUGE, ER ;
GARPMAN, S ;
GERASSIMOV, SG ;
GROTE, J ;
GULAMOV, KG ;
GUPTA, SK ;
HECKMAN, HH ;
HUANG, H ;
JAKOBSSON, B ;
JUDEK, B ;
KACHROO, S ;
KADYROV, FG ;
KALYACHKINA, GS ;
KANYGINA, EK ;
KARABOVA, M ;
KAUL, GL ;
KHARLAMOV, SP ;
KOSS, T ;
KRASNOV, SA ;
KUMAR, V ;
LAL, P ;
LARINOVA, VG ;
LEPETAN, VN ;
LIU, LS ;
LOKANATHAN, S ;
LORD, J ;
LUKICHEVA, NS ;
LUO, SB .
NUCLEAR PHYSICS B, 1992, 388 (01) :3-30
[2]   INTERMITTENCY IN THE GINZBURG-LANDAU MODEL FOR FIRST-ORDER PHASE-TRANSITIONS [J].
BABICHEV, LF ;
KLENITSKY, DV ;
KUVSHINOV, VI .
PHYSICS LETTERS B, 1995, 345 (03) :269-271
[3]   ORDER OF THE DECONFINING PHASE-TRANSITION IN PURE-GAUGE QCD [J].
BACILIERI, P ;
REMIDDI, E ;
TODESCO, GM ;
BERNASHCHI, M ;
CABASINO, S ;
CABIBBO, N ;
FERNANDEZ, LA ;
MARINARI, E ;
PAOLUCCI, P ;
PARISI, G ;
SALINA, G ;
TARANCON, A ;
COPPOLA, F ;
LOMBARDO, MP ;
SIMEONE, E ;
TRIPICCIONE, R ;
FIORENTINI, G ;
LAI, A ;
MARCHESINI, PA ;
MARZANO, F ;
RAPUANO, F ;
TROSS, W .
PHYSICAL REVIEW LETTERS, 1988, 61 (14) :1545-1548
[4]   MOMENTS OF RAPIDITY DISTRIBUTIONS AS A MEASURE OF SHORT-RANGE FLUCTUATIONS IN HIGH-ENERGY COLLISIONS [J].
BIALAS, A ;
PESCHANSKI, R .
NUCLEAR PHYSICS B, 1986, 273 (3-4) :703-718
[5]   INTERMITTENCY IN MULTIPARTICLE PRODUCTION AT HIGH-ENERGY [J].
BIALAS, A ;
PESCHANSKI, R .
NUCLEAR PHYSICS B, 1988, 308 (04) :857-867
[6]   Analytical study of factorial moments for first- and second-order phase transitions [J].
Cai, X ;
Yang, CB ;
Zhou, ZM .
PHYSICAL REVIEW C, 1996, 54 (05) :2775-2778
[7]   KNO SCALING AS A PHASE-TRANSITION OF A FEYNMAN-WILSON GAS [J].
CARRUTHERS, P ;
SARCEVIC, I .
PHYSICS LETTERS B, 1987, 189 (04) :442-448
[8]   DECONFINEMENT AND VIRTUAL QUARK LOOPS [J].
CELIK, T ;
ENGELS, J ;
SATZ, H .
PHYSICS LETTERS B, 1983, 133 (06) :427-432
[9]  
DREMIN I, 1992, P RINGB WORKSH RINGB
[10]   STATISTICAL FIELD-THEORY OF MULTIPARTICLE DENSITY-FLUCTUATIONS [J].
ELZE, HT ;
SARCEVIC, I .
PHYSICAL REVIEW LETTERS, 1992, 68 (13) :1988-1991