Review on Studies of Machine Learning Algorithms

被引:11
作者
Xu, Peiyuan [1 ]
机构
[1] Chengdu Foreign Languages Sch, Chengdu 611731, Sichuan, Peoples R China
来源
2018 INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS AND CONTROL ENGINEERING (ISPECE 2018) | 2019年 / 1187卷
关键词
D O I
10.1088/1742-6596/1187/5/052103
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper mainly introduces machine learning algorithms in the field of artificial intelligence. First, it describes the classification of such algorithms and their main application scenarios. Then the paper introduces the principles behind those algorithms and presents the author's views. Finally, the development trend of machine learning algorithms is envisioned.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Machine learning algorithms for predicting membrane bioreactors performance: A review
    Muniz de Queiroz, Marina
    Moreira, Victor Rezende
    Amaral, Míriam Cristina Santos
    Oliveira, Sílvia Maria Alves Corrêa
    Journal of Environmental Management, 2025, 380
  • [32] A review on machine learning algorithms to predict daylighting inside buildings
    Ayoub, Mohammed
    SOLAR ENERGY, 2020, 202 : 249 - 275
  • [33] Machine Learning Algorithms for Neurosurgical Preoperative Planning: A Scoping Review
    Bocanegra-Becerra, Jhon E.
    Ferreira, Julia Sader Neves
    Simoni, Gabriel
    Hong, Anthony
    Rios-Garcia, Wagner
    Eraghi, Mohammad Mirahmadi
    Castilla-Encinas, Adriam M.
    Colan, Jhair Alejandro
    Rojas-Apaza, Rolando
    Trevejo, Emanuel Eduardo Franco Pariasca
    Bertani, Raphael
    Lopez-Gonzalez, Miguel Angel
    WORLD NEUROSURGERY, 2025, 194
  • [34] Effectiveness Review of the Machine Learning Algorithms for Scheduling in Cloud Environment
    Srikanth, G. Umarani
    Geetha, R.
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2023, 30 (06) : 3769 - 3789
  • [35] Machine Learning Algorithms to Detect Subclinical Keratoconus: Systematic Review
    Maile, Howard
    Li, Ji-Peng Olivia
    Gore, Daniel
    Leucci, Marcello
    Mulholland, Padraig
    Hau, Scott
    Szabo, Anita
    Moghul, Ismail
    Balaskas, Konstantinos
    Fujinami, Kaoru
    Hysi, Pirro
    Davidson, Alice
    Liskova, Petra
    Hardcastle, Alison
    Tuft, Stephen
    Pontikos, Nikolas
    JMIR MEDICAL INFORMATICS, 2021, 9 (12)
  • [36] A review of supervised machine learning algorithms and their applications to ecological data
    Crisci, C.
    Ghattas, B.
    Perera, G.
    ECOLOGICAL MODELLING, 2012, 240 : 113 - 122
  • [37] A Review at Machine Learning Algorithms Targeting Big Data Challenges
    Rathor, Abhinav
    Gyanchandani, Manasi
    2017 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER, AND OPTIMIZATION TECHNIQUES (ICEECCOT), 2017, : 753 - 758
  • [38] Fraud Detection and Prevention Using Machine Learning Algorithms: A Review
    Priya, G. Jaculine
    Saradha, S.
    2021 7TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENERGY SYSTEMS (ICEES), 2021, : 564 - 568
  • [39] Mineral Leaching Modeling Through Machine Learning Algorithms - A Review
    Saldana, Manuel
    Neira, Purisima
    Gallegos, Sandra
    Salinas-Rodriguez, Eleazar
    Perez-Rey, Ignacio
    Toro, Norman
    FRONTIERS IN EARTH SCIENCE, 2022, 10
  • [40] Review: Heart Diseases Detection by Machine Learning Classification Algorithms
    Pothala Ramya
    Ashapu Bhavani
    Sangeeta Viswanadham
    Journal of Harbin Institute of Technology(New Series), 2022, 29 (04) : 81 - 92