FAITHFUL REPRESENTATIONS OF MINIMAL DIMENSION OF CURRENT HEISENBERG LIE ALGEBRAS

被引:15
作者
Cagliero, Leandro [1 ]
Rojas, Nadina [1 ]
机构
[1] Univ Nacl Cordoba, FAMAF, CIEM, RA-5000 Cordoba, Argentina
关键词
Faithful representations; current Lie algebras; truncated Lie algebras; Ado's theorem; Heisenberg; CONJECTURE;
D O I
10.1142/S0129167X09005790
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a Lie algebra g over a field of characteristic zero k, let mu(g) = min{dim pi : p is a faithful representation of g}. Let h(m) be the Heisenberg Lie algebra of dimension 2m + 1 over k and let k[t] be the polynomial algebra in one variable. Given m is an element of N and p is an element of k[t], let h(m,p) = h(m) circle times k[t]/(p) be the current Lie algebra associated to h(m) and k[ t]/( p), where ( p) is the principal ideal in k[ t] generated by p. In this paper we prove that mu(h(m,p)) = m deg p + [2 root deg p]. We also prove a result that gives information about the structure of a commuting family of operators on a finite dimensional vector space. From it is derived the well-known theorem of Schur on maximal abelian subalgebras of gl(n, k).
引用
收藏
页码:1347 / 1362
页数:16
相关论文
共 25 条
[1]  
[Anonymous], 1905, J. Reine Angew. Math.
[2]   SIMPLY TRANSITIVE GROUPS OF AFFINE MOTIONS [J].
AUSLANDER, L .
AMERICAN JOURNAL OF MATHEMATICS, 1977, 99 (04) :809-826
[3]  
BENOIST Y, 1995, J DIFFER GEOM, V41, P21
[4]   Representability of lie algebras and lie groups by matrices [J].
Birkhoff, G .
ANNALS OF MATHEMATICS, 1937, 38 :526-532
[5]   Affine structures on nilmanifolds [J].
Burde, D .
INTERNATIONAL JOURNAL OF MATHEMATICS, 1996, 7 (05) :599-616
[6]   MODULES FOR CERTAIN LIE-ALGEBRAS OF MAXIMAL CLASS [J].
BURDE, D ;
GRUNEWALD, F .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1995, 99 (03) :239-254
[7]   On a refinement of Ado's theorem [J].
Burde, D .
ARCHIV DER MATHEMATIK, 1998, 70 (02) :118-127
[8]   Minimal faithful representations of reductive Lie algebras [J].
Burde, Dietrich ;
Moens, Wolfgang .
ARCHIV DER MATHEMATIK, 2007, 89 (06) :513-523
[9]  
Dekimpe K, 2000, FORUM MATH, V12, P77
[10]   The strong Macdonald conjecture and Hodge theory on the loop Grassmannian [J].
Fishel, Susanna ;
Grojnowski, Ian ;
Teleman, Constantin .
ANNALS OF MATHEMATICS, 2008, 168 (01) :175-220