Human-interpretable image features derived from densely mapped cancer pathology slides predict diverse molecular phenotypes

被引:149
作者
Diao, James A. [1 ,2 ]
Wang, Jason K. [1 ,2 ]
Chui, Wan Fung [1 ,2 ]
Mountain, Victoria [1 ]
Gullapally, Sai Chowdary [1 ]
Srinivasan, Ramprakash [1 ]
Mitchell, Richard N. [2 ,3 ]
Glass, Benjamin [1 ]
Hoffman, Sara [1 ]
Rao, Sudha K. [1 ]
Maheshwari, Chirag [1 ]
Lahiri, Abhik [1 ]
Prakash, Aaditya [1 ]
McLoughlin, Ryan [1 ]
Kerner, Jennifer K. [1 ]
Resnick, Murray B. [1 ,4 ]
Montalto, Michael C. [1 ]
Khosla, Aditya [1 ]
Wapinski, Ilan N. [1 ]
Beck, Andrew H. [1 ]
Elliott, Hunter L. [1 ]
Taylor-Weiner, Amaro [1 ]
机构
[1] PathAI Inc, Boston, MA 02215 USA
[2] Harvard Med Sch, Program Hlth Sci & Technol, Boston, MA 02115 USA
[3] Harvard Med Sch, Brigham & Womens Hosp, Dept Pathol, Boston, MA 02115 USA
[4] Warren Alpert Med Sch, Dept Pathol, Providence, RI USA
关键词
PD-L1; EXPRESSION; B-CELLS; IMMUNOTHERAPY; FIBROBLASTS; MACROPHAGES; SURVIVAL; GUIDE;
D O I
10.1038/s41467-021-21896-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Computational methods have made substantial progress in improving the accuracy and throughput of pathology workflows for diagnostic, prognostic, and genomic prediction. Still, lack of interpretability remains a significant barrier to clinical integration. We present an approach for predicting clinically-relevant molecular phenotypes from whole-slide histopathology images using human-interpretable image features (HIFs). Our method leverages >1.6 million annotations from board-certified pathologists across >5700 samples to train deep learning models for cell and tissue classification that can exhaustively map whole-slide images at two and four micron-resolution. Cell- and tissue-type model outputs are combined into 607 HIFs that quantify specific and biologically-relevant characteristics across five cancer types. We demonstrate that these HIFs correlate with well-known markers of the tumor microenvironment and can predict diverse molecular signatures (AUROC 0.601-0.864), including expression of four immune checkpoint proteins and homologous recombination deficiency, with performance comparable to 'black-box' methods. Our HIF-based approach provides a comprehensive, quantitative, and interpretable window into the composition and spatial architecture of the tumor microenvironment. Computational methods have made progress in improving classification accuracy and throughput of pathology workflows, but lack of interpretability remains a barrier to clinical integration. Here, the authors present an approach for predicting clinically-relevant molecular phenotypes from whole-slide histopathology images using human-interpretable image features.
引用
收藏
页数:15
相关论文
共 94 条
[61]   Automatic cellularity assessment from post-treated breast surgical specimens [J].
Peikari, Mohammad ;
Salama, Sherine ;
Nofech-Mozes, Sharon ;
Martel, Anne L. .
CYTOMETRY PART A, 2017, 91A (11) :1078-1087
[62]   B cells are associated with survival and immunotherapy response in sarcoma [J].
Petitprez, Florent ;
de Reynies, Aurelien ;
Keung, Emily Z. ;
Chen, Tom Wei-Wu ;
Sun, Cheng-Ming ;
Calderaro, Julien ;
Jeng, Yung-Ming ;
Hsiao, Li-Ping ;
Lacroix, Laetitia ;
Bougouein, Antoine ;
Moreira, Marco ;
Lacroix, Guillaume ;
Natario, Ivo ;
Adam, Julien ;
Lucchesi, Carlo ;
Laizet, Yec'han ;
Toulmonde, Maud ;
Burgess, Melissa A. ;
Bolejack, Vanessa ;
Reinke, Denise ;
Wani, Khalid M. ;
Wang, Wei-Lien ;
Lazar, Alexander J. ;
Roland, Christina L. ;
Wargo, Jennifer A. ;
Italiano, Antoine ;
Sautes-Fridman, Catherine ;
Tawbi, Hussein A. ;
Fridman, Wolf H. .
NATURE, 2020, 577 (7791) :556-+
[63]   Stimulation of collagen production by transforming growth factor-β1 during differentiation of cardiac fibroblasts to myofibroblasts [J].
Petrov, VV ;
Fagard, RH ;
Lijnen, PJ .
HYPERTENSION, 2002, 39 (02) :258-263
[64]   Combining dependent P-values with an empirical adaptation of Brown's method [J].
Poole, William ;
Gibbs, David L. ;
Shmulevich, Ilya ;
Bernard, Brady ;
Knijnenburg, Theo A. .
BIOINFORMATICS, 2016, 32 (17) :430-436
[65]  
Ragab Halla Mohamed, 2018, Journal of Genetic Engineering and Biotechnology, V16, P479, DOI 10.1016/j.jgeb.2018.03.002
[66]   Tumor necrosis correlates with PD-L1 and PD-1 expression in lung adenocarcinoma [J].
Reiniger, Lilla ;
Teglasi, Vanda ;
Pipek, Orsolya ;
Rojko, Livia ;
Glasz, Tibor ;
Vagvoelgyi, Attila ;
Kovalszky, Ilona ;
Gyulai, Marton ;
Lohinai, Zoltan ;
Raso, Erzsebet ;
Timar, Jozsef ;
Dome, Balazs ;
Szallasi, Zoltan ;
Moldvay, Judit .
ACTA ONCOLOGICA, 2019, 58 (08) :1087-1094
[67]  
Rosenberg A., 2007, P 2007 JOINT C EMP M, P410
[68]   Image based Machine Learning for identification of macrophage subsets [J].
Rostam, Hassan M. ;
Reynolds, Paul M. ;
Alexander, Morgan R. ;
Gadegaard, Nikolaj ;
Ghaemmaghami, Amir M. .
SCIENTIFIC REPORTS, 2017, 7
[69]  
Sadimin Evita T, 2012, N Am J Med Sci (Boston), V5, P103
[70]   Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images [J].
Saltz, Joel ;
Gupta, Rajarsi ;
Hou, Le ;
Kurc, Tahsin ;
Singh, Pankaj ;
Vu Nguyen ;
Samaras, Dimitris ;
Shroyer, Kenneth R. ;
Zhao, Tianhao ;
Batiste, Rebecca ;
Van Arnam, John ;
Shmulevich, Ilya ;
Rao, Arvind U. K. ;
Lazar, Alexander J. ;
Sharma, Ashish ;
Thorsson, Vesteinn .
CELL REPORTS, 2018, 23 (01) :181-+