Impact of Inner Heliospheric Boundary Conditions on Solar Wind Predictions at Earth

被引:16
作者
Gonzi, Siegfried [1 ]
Weinzierl, M. [2 ]
Bocquet, F. -X. [3 ]
Bisi, M. M. [4 ]
Odstrcil, D. [5 ]
Jackson, B. V. [6 ]
Yeates, A. R. [7 ]
Jackson, D. R. [1 ]
Henney, C. J. [8 ]
Nick Arge, C. [9 ]
机构
[1] Met Off, Exeter, Devon, England
[2] Univ Durham, Adv Res Comp, Durham, England
[3] Spire Global UK Ltd, Glasgow, Lanark, Scotland
[4] RAL Space, Sci & Technol Facil Council, Didcot, Oxon, England
[5] George Mason Univ, Space Weather Lab, Fairfax, VA 22030 USA
[6] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA
[7] Univ Durham, Dept Math Sci, Durham, England
[8] Air Force Res Lab, Space Vehicles Directorate, Kirtland AFB, NM USA
[9] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
来源
SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS | 2021年 / 19卷 / 01期
基金
美国国家科学基金会; 英国科学技术设施理事会;
关键词
solar wind; space weather; modeling; heliosphere; interplanetary medium; high speed solar wind stream; DATA ASSIMILATION; MODEL AWSOM; FIELD; SPEED; VALIDATION; CORONA; EXPLORATION; STREAMS; SUN;
D O I
10.1029/2020SW002499
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Predictions of the physical parameters of the solar wind at Earth are at the core of operational space weather forecasts. Such predictions typically use line-of-sight observations of the photospheric magnetic field to drive a heliospheric model. The models Wang-Sheeley-Arge (WSA) and ENLIL for the transport in the heliosphere are commonly used for these respective tasks. Here we analyze the impact of replacing the potential field coronal boundary conditions from WSA with two alternative approaches. The first approach uses a more realistic nonpotential rather than potential approach, based on the Durham Magneto Frictional Code (DUMFRIC) model. In the second approach the ENLIL inner boundary conditions are based on Inter Planetary Scintillation observations (IPS). We compare predicted solar wind speed, plasma density, and magnetic field magnitude with observations from the WIND spacecraft for two 6-month intervals in 2014 and 2016. Results show that all models tested produce fairly similar output when compared to the observed time series. This is not only reflected in fairly low correlation coefficients (<0.3) but also large biases. For example, for solar wind speed some models have average biases of more than 150 km/s. On a positive note, the choice of coronal magnetic field model has a clear influence on the model results when compared to the other models in this study. Simulations driven by IPS data have a high success rate with regard to detection of the high speed solar wind. Our results also indicate that model forecasts do not degrade for longer forecast times.
引用
收藏
页数:30
相关论文
共 93 条
[1]   MAGNETIC FIELDS AND STRUCTURE OF SOLAR CORONA .I. METHODS OF CALCULATING CORONAL FIELDS [J].
ALTSCHULER, MD ;
NEWKIRK, G .
SOLAR PHYSICS, 1969, 9 (01) :131-+
[2]   Coronal mass ejection: Initiation, magnetic helicity, and flux ropes. II. Turbulent diffusion-driven evolution [J].
Amari, T ;
Luciani, JF ;
Aly, JJ ;
Mikic, Z ;
Linker, J .
ASTROPHYSICAL JOURNAL, 2003, 595 (02) :1231-1250
[3]   Air Force Data Assimilative Photospheric Flux Transport (ADAPT) Model [J].
Arge, C. Nick ;
Henney, Carl J. ;
Koller, Josef ;
Compeau, C. Rich ;
Young, Shawn ;
MacKenzie, David ;
Fay, Alex ;
Harvey, John W. .
TWELFTH INTERNATIONAL SOLAR WIND CONFERENCE, 2010, 1216 :343-+
[4]   Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates [J].
Arge, CN ;
Pizzo, VJ .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2000, 105 (A5) :10465-10479
[5]  
Arge CN, 2003, AIP CONF PROC, V679, P190, DOI 10.1063/1.1618574
[6]   A COMPARISON OF FLARE FORECASTING METHODS. I. RESULTS FROM THE "ALL-CLEAR" WORKSHOP [J].
Barnes, G. ;
Leka, K. D. ;
Schrijver, C. J. ;
Colak, T. ;
Qahwaji, R. ;
Ashamari, O. W. ;
Yuan, Y. ;
Zhang, J. ;
McAteer, R. T. J. ;
Bloomfield, D. S. ;
Higgins, P. A. ;
Gallagher, P. T. ;
Falconer, D. A. ;
Georgoulis, M. K. ;
Wheatland, M. S. ;
Balch, C. ;
Dunn, T. ;
Wagner, E. L. .
ASTROPHYSICAL JOURNAL, 2016, 829 (02)
[7]   The large angle spectroscopic coronagraph (LASCO) [J].
Brueckner, GE ;
Howard, RA ;
Koomen, MJ ;
Korendyke, CM ;
Michels, DJ ;
Moses, JD ;
Socker, DG ;
Dere, KP ;
Lamy, PL ;
Llebaria, A ;
Bout, MV ;
Schwenn, R ;
Simnett, GM ;
Bedford, DK ;
Eyles, CJ .
SOLAR PHYSICS, 1995, 162 (1-2) :357-402
[8]   Forecasting High-Speed Solar Wind Streams Based on Solar Extreme Ultraviolet Images [J].
Bu, X. ;
Luo, B. ;
Shen, C. ;
Liu, S. ;
Gong, J. ;
Cao, Y. ;
Wang, H. .
SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2019, 17 (07) :1040-1058
[9]   Coronal Magnetism: Difficulties and Prospects [J].
Cargill, Peter J. .
SPACE SCIENCE REVIEWS, 2009, 144 (1-4) :413-421
[10]   The SOHO mission: An overview [J].
Domingo, V ;
Fleck, B ;
Poland, AI .
SOLAR PHYSICS, 1995, 162 (1-2) :1-37