Vortex lattices in rotating Bose-Einstein condensates

被引:15
作者
Aftalion, Amandine [1 ]
Blanc, Xavier [1 ]
机构
[1] Univ Paris 06, CNRS, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris, France
关键词
Bose-Einstein condensates; lattice; lowest Landau level; averaging process; Gross-Pitaevskii vortices;
D O I
10.1137/050632889
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The structure of the vortex lattice for a fast rotating condensate in a harmonic trap has been studied experimentally and numerically: it is an almost regular hexagonal lattice, with a distortion on the edges. In this paper, we provide rigorous proofs of results announced in [ A. Aftalion, X. Blanc, and J. Dalibard, Phys. Rev. A, 71 ( 2005), p. 023611]. We analyze the vortex pattern in the framework of the Gross - Pitaevskii energy using wave functions in the lowest Landau level. We compute the energy of a regular triangular lattice and of a class of distorted lattices and find the optimal distortion which provides a decay of the wave function similar to an inverted parabola.
引用
收藏
页码:874 / 893
页数:20
相关论文
共 36 条
[1]   Observation of vortex lattices in Bose-Einstein condensates [J].
Abo-Shaeer, JR ;
Raman, C ;
Vogels, JM ;
Ketterle, W .
SCIENCE, 2001, 292 (5516) :476-479
[2]   Vortex distribution in the lowest Landau level [J].
Aftalion, A ;
Blanc, X ;
Nier, F .
PHYSICAL REVIEW A, 2006, 73 (01)
[3]   Vortex patterns in a fast rotating Bose-Einstein condensate [J].
Aftalion, A ;
Blanc, X ;
Dalibard, J .
PHYSICAL REVIEW A, 2005, 71 (02)
[4]   Vortex energy and vortex bending for a rotating Bose-Einstein condensate [J].
Aftalion, A ;
Riviere, T .
PHYSICAL REVIEW A, 2001, 64 (04) :436111-436117
[5]  
AFTALION A, 2006, UNHPUB REDUCED ENERG
[6]  
AFTALION A, 2003, CR ACAD SCI PARIS 1, V336
[7]  
AFTALION A, 2006, IN PRESS J FUNCT ANA
[8]   HOMOGENIZATION AND 2-SCALE CONVERGENCE [J].
ALLAIRE, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (06) :1482-1518
[9]   Vortex core structure and global properties of rapidly rotating Bose-Einstein condensates [J].
Baym, G ;
Pethick, CJ .
PHYSICAL REVIEW A, 2004, 69 (04) :043619-1
[10]  
Bethuel F., 1994, Progress in Nonlinear Differential Equations and their Applications, V13