ORTHOGONAL FUNCTIONS AND ZERNIKE POLYNOMIALS-A RANDOM VARIABLE INTERPRETATION

被引:2
作者
Withers, C. S. [1 ]
机构
[1] Ind Res Ltd, Appl Math Grp, Lower Hutt, New Zealand
关键词
Zernike polynomials; orthogonal functions;
D O I
10.1017/S1446181109000169
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There are advantages in viewing orthogonal functions as functions generated by a random variable from a basis set of functions. Let Y be a random variable distributed uniformly on [0, 1]. We give two ways of generating the Zernike radial polynomials with parameter 1, {Z(l+2n)(l)(x), n >= 0}. The first is using the standard basis {x(n), n >= 0} and the random variable Y(1/(l+1)). The second is using the nonstandard basis {x(l+2n), n >= 0} and the random variable Y(1/2). Zernike polynomials are important in the removal of lens aberrations, in characterizing video images with a small number of numbers, and in automatic aircraft identification.
引用
收藏
页码:435 / 444
页数:10
相关论文
共 13 条