For most plants, elevated salinities can promote both hyperionic and hyperosmotic stress, often resulting in decreased growth and increased mortality. In previous studies involving plant-water relations, two contrasting physiological mechanisms to water stress have emerged: (i) stress-tolerance, which can be achieved through osmotic adjustment and changes in tissue elasticity, and (ii) stress-avoidance, which restricts further water loss through decreased stomatal conductance and changes in leaf morphology and/or orientation. While these processes have been well characterized in angiosperms during drought, few studies have considered these responses in halophytes during salt-stress. in this study, experimental microcosms were used to evaluate salt-tolerance and salt-avoidance in two contrasting coastal-marsh halophytes, Juncus roemerianus and Spartina alterniflora. In mature S. alterniflora, preacclimated to freshwater, only salt-tolerance mechanisms (osmotic adjustment and increased tissue rigidity) were observed during high salinity conditions. In contrast, physiological modifications observed in mature J. roemerianus involved salt-avoidance through decreased stomatal conductance. These physiological responses are consistent with zonation patterns in these plants, wherein S. alterniflora resides in the lower marsh and must contend with long-term salt exposure and J. roemerianus inhabits the upper reaches of salt-marshes where salinities tend to be lower and where salt-stress often involves transient exposure to high salinities. (C) 2009 Elsevier B.V. All rights reserved.