Localized states and non-variational Ising-Bloch transition of a parametrically driven easy-plane ferromagnetic wire

被引:41
作者
Clerc, Marcel G. [1 ]
Coulibaly, Saliya [1 ,2 ]
Laroze, David [3 ]
机构
[1] Univ Chile, Fac Ciencias Fis & Matemat, Dept Fis, Santiago, Chile
[2] Univ Cocody, UFR SSMT, Lab Cristallog & Phys Mol LACPM, Abidjan, Cote Ivoire
[3] Univ Tarapaca, Inst Alta Invest, Arica, Chile
关键词
Landau-Lifshitz-Gilbert equation; Nonlinear forced oscillator; Localized states; Parametrically driven damped nonlinear Schrodinger equation; CRYSTAL-LIGHT-VALVE; NONLINEAR DISPERSIVE CAVITY; FRONT PROPAGATION; PATTERN-FORMATION; SOLITARY WAVES; DOMAIN-WALL; STABILITY; SOLITONS; INSTABILITIES; BIFURCATION;
D O I
10.1016/j.physd.2009.10.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A time-periodic magnetic field applied transversally to the hard axis of an extended easy-plane ferromagnetic sample can produce parametric resonance. For the 2:1 resonance, the prototype order-parameter-equation derived from the Landau-Lifshitz-Gilbert dynamical model for the precessional motion is the parametrically driven damped nonlinear Schrodinger equation. Unfortunately this standard approximation fails to meet the stability feature of the synchronized precession states, and we propose some amendment. Localized solutions supported by the uniform states are characterized and classified into two types: motionless and propagative states, rising through a non-variational Ising-Bloch transition. We propose and investigate a dynamical model ruling this transition. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:72 / 86
页数:15
相关论文
共 66 条
[41]   Stable multipulse states in a nonlinear dispersive cavity with parametric gain [J].
Longhi, S .
PHYSICAL REVIEW E, 1996, 53 (05) :5520-5522
[42]   MODULATIONAL INSTABILITY OSCILLATION AND SOLITARY WAVES IN A NONLINEAR DISPERSIVE CAVITY WITH PARAMETRIC GAIN [J].
LONGHI, S ;
GERACI, A .
APPLIED PHYSICS LETTERS, 1995, 67 (21) :3060-3062
[43]   ULTRASHORT-PULSE GENERATION IN DEGENERATE OPTICAL PARAMETRIC OSCILLATORS [J].
LONGHI, S .
OPTICS LETTERS, 1995, 20 (07) :695-697
[44]  
MCLAUGHLIN DW, 1983, PHYS REV LETT, V51, P75, DOI 10.1103/PhysRevLett.51.75
[45]   LONG-TERM STORAGE OF A SOLITON BIT STREAM BY USE OF PHASE-SENSITIVE AMPLIFICATION [J].
MECOZZI, A ;
KATH, WL ;
KUMAR, P ;
GOEDDE, CG .
OPTICS LETTERS, 1994, 19 (24) :2050-2052
[46]   Universal criterion and amplitude equation for a nonequilibrium Ising-Bloch transition [J].
Michaelis, D. ;
Peschel, U. ;
Lederer, F. ;
Skryabin, D.V. ;
Firth, W.J. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 63 (6 II) :1-066602
[47]  
MIKESKA HJ, 1978, J PHYS C SOLID STATE, V11, pL29, DOI 10.1088/0022-3719/11/1/007
[48]   PARAMETRICALLY EXCITED SOLITARY WAVES [J].
MILES, JW .
JOURNAL OF FLUID MECHANICS, 1984, 148 (NOV) :451-460
[49]  
Murray J., 2013, MATH BIOL, DOI 10.1007/978-3-662-08539-4
[50]   PATTERN-FORMATION IN A LIQUID-CRYSTAL LIGHT VALVE WITH FEEDBACK, INCLUDING POLARIZATION, SATURATION, AND INTERNAL THRESHOLD EFFECTS [J].
NEUBECKER, R ;
OPPO, GL ;
THUERING, B ;
TSCHUDI, T .
PHYSICAL REVIEW A, 1995, 52 (01) :791-808