Localized states and non-variational Ising-Bloch transition of a parametrically driven easy-plane ferromagnetic wire

被引:41
作者
Clerc, Marcel G. [1 ]
Coulibaly, Saliya [1 ,2 ]
Laroze, David [3 ]
机构
[1] Univ Chile, Fac Ciencias Fis & Matemat, Dept Fis, Santiago, Chile
[2] Univ Cocody, UFR SSMT, Lab Cristallog & Phys Mol LACPM, Abidjan, Cote Ivoire
[3] Univ Tarapaca, Inst Alta Invest, Arica, Chile
关键词
Landau-Lifshitz-Gilbert equation; Nonlinear forced oscillator; Localized states; Parametrically driven damped nonlinear Schrodinger equation; CRYSTAL-LIGHT-VALVE; NONLINEAR DISPERSIVE CAVITY; FRONT PROPAGATION; PATTERN-FORMATION; SOLITARY WAVES; DOMAIN-WALL; STABILITY; SOLITONS; INSTABILITIES; BIFURCATION;
D O I
10.1016/j.physd.2009.10.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A time-periodic magnetic field applied transversally to the hard axis of an extended easy-plane ferromagnetic sample can produce parametric resonance. For the 2:1 resonance, the prototype order-parameter-equation derived from the Landau-Lifshitz-Gilbert dynamical model for the precessional motion is the parametrically driven damped nonlinear Schrodinger equation. Unfortunately this standard approximation fails to meet the stability feature of the synchronized precession states, and we propose some amendment. Localized solutions supported by the uniform states are characterized and classified into two types: motionless and propagative states, rising through a non-variational Ising-Bloch transition. We propose and investigate a dynamical model ruling this transition. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:72 / 86
页数:15
相关论文
共 66 条
[1]   Impurity-induced stabilization of solitons in arrays of parametrically driven nonlinear oscillators [J].
Alexeeva, NV ;
Barashenkov, IV ;
Tsironis, GP .
PHYSICAL REVIEW LETTERS, 2000, 84 (14) :3053-3056
[2]  
[Anonymous], 1983, GEOMETRICAL METHODS
[3]  
[Anonymous], 2003, MECHANICS
[4]   Formation of clusters of localized states in a gas discharge system via a self-completion scenario [J].
Astrov, YA ;
Logvin, YA .
PHYSICAL REVIEW LETTERS, 1997, 79 (16) :2983-2986
[5]   STABILITY DIAGRAM OF THE PHASE-LOCKED SOLITONS IN THE PARAMETRICALLY DRIVEN, DAMPED NONLINEAR SCHRODINGER-EQUATION [J].
BARASHENKOV, IV ;
BOGDAN, MM ;
KOROBOV, VI .
EUROPHYSICS LETTERS, 1991, 15 (02) :113-118
[6]   Cavity solitons as pixels in semiconductor microcavities [J].
Barland, S ;
Tredicce, JR ;
Brambilla, M ;
Lugiato, LA ;
Balle, S ;
Giudici, M ;
Maggipinto, T ;
Spinelli, L ;
Tissoni, G ;
Knödl, T ;
Miller, M ;
Jäger, R .
NATURE, 2002, 419 (6908) :699-702
[7]   Nonvariational effects in nonequilibrium systems [J].
Barra, F ;
Descalzi, O ;
Tirapegui, E .
PHYSICS LETTERS A, 1996, 221 (3-4) :193-196
[8]  
BULAEVSKII LN, 1964, SOV PHYS JETP-USSR, V18, P530
[9]   THE GROWTH OF CRYSTALS AND THE EQUILIBRIUM STRUCTURE OF THEIR SURFACES [J].
BURTON, WK ;
CABRERA, N ;
FRANK, FC .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1951, 243 (866) :299-358
[10]   Nonlinear stability of oscillatory pulses in the parametric nonlinear Schrodinger equation [J].
Chang, Paul A. C. ;
Promislow, Keith .
NONLINEARITY, 2007, 20 (03) :743-763