Tissue-specific engineering: 3D bioprinting in regenerative medicine

被引:55
作者
Wang, Zhen [1 ]
Kapadia, Wasim [1 ,2 ]
Li, Cuidi [1 ]
Lin, Feng [1 ]
Pereira, Ruben F. [3 ,5 ]
Granja, Pedro L. [3 ]
Sarmento, Bruno [3 ,4 ,5 ]
Cui, Wenguo [6 ]
机构
[1] Shanghai Jiao Tong Univ, Ruijin Hosp, Shanghai Inst Traumatol & Orthopaed,Sch Med, Shanghai Key Lab Prevent & Treatment Bone & Joint, 197 Ruijin 2nd Rd, Shanghai 200025, Peoples R China
[2] Univ Waterloo, Dept Nanotechnol Engn, 200 Univ Ave West, Waterloo, ON N2L 3G1, Canada
[3] Univ Porto, Inst Invest & Inovacao Saude I3S, Rua Alfredo Allen 208, P-4200135 Porto, Portugal
[4] Univ Porto, ICBAS Inst Ciencias Biomed Abel Salazar, Rua Jorge Viterbo Ferreira 228, P-4050313 Porto, Portugal
[5] CESPU Inst Invest & Formacao Avancada Ciencias &, Rua Cent Gandra 1317, P-4585116 Gandra, Portugal
[6] Shanghai Jiao Tong Univ, Ruijin Hosp,Sch Med, Shanghai Inst Traumatol & Orthopaed,Dept Orthopae, Shanghai Key Lab Prevent & Treatment Bone & Joint, 197 Ruijin 2nd Rd, Shanghai 200025, Peoples R China
基金
国家重点研发计划;
关键词
3D printing; Bioprinting; Tissue-specific; Tissue engineering; Regenerative medicine; HUMAN KNEE-JOINT; EXTRACELLULAR-MATRIX; STEM-CELLS; EXPERIMENTAL STRATEGIES; MECHANICAL STRENGTH; VASCULAR CONSTRUCTS; CUSTOMIZABLE ARRAYS; ENDOTHELIAL-CELLS; ARTIFICIAL CORNEA; HYDROGEL SCAFFOLD;
D O I
10.1016/j.jconrel.2020.11.044
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Despite its complexity, the human body is composed of only four basic tissue types, namely epithelial, connective, muscular and nervous tissues. Notably, each tissue is an assemblage of similarly functional cells united in performing a specific function. Instead of mimicking functionality mechanically, three-dimensional (3D) bio-printing based on histological categories is a strategy designed with multiple materials and techniques, which is a versatile technology able to form functional organ structures in line with simplicity. This review aims to provide an overview of tissue-specific 3D bioprinting based on the biological characteristics of four tissue types, including the histological features, biomaterials and corresponding applications. It first briefly introduces the goals of tissue-specific bioprinting and then summarizes the major techniques and identification of particular material development. Moreover, its remarkable regenerative power in replacement therapy and novel outbreak in particular tissues are assembled by epithelial, connective, nerve and muscle tissues. Finally, we discuss challenges and future prospects of tissue-specific based 3D bioprinting in biomedicine, hoping to further inspire the development.
引用
收藏
页码:237 / 256
页数:20
相关论文
共 229 条
[1]  
Agarwal S., 2020, StatPearls
[2]  
Aguado BA, 2012, TISSUE ENG PT A, V18, P806, DOI [10.1089/ten.tea.2011.0391, 10.1089/ten.TEA.2011.0391]
[3]   Artificial corneas versus donor corneas for repeat corneal transplants [J].
Akpek, Esen K. ;
Alkharashi, Majed ;
Hwang, Frank S. ;
Ng, Sueko M. ;
Lindsley, Kristina .
COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2014, (11)
[4]   Current advances in electrospun gelatin-based scaffolds for tissue engineering applications [J].
Aldana, Ana A. ;
Abraham, Gustavo A. .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2017, 523 (02) :441-453
[5]   Corneal Stroma Enhancement With Decellularized Stromal Laminas With or Without Stem Cell Recellularization for Advanced Keratoconus [J].
Alio Del Barrio, Jorge L. ;
El Zarif, Mona ;
Azaar, Albert ;
Makdissy, Nehman ;
Khalil, Charbel ;
Harb, Walid ;
El Achkar, Ibrahim ;
Jawad, Ziad Abdul ;
De Miguel, Maria P. ;
Alio, Jorge L. .
AMERICAN JOURNAL OF OPHTHALMOLOGY, 2018, 186 :47-58
[6]   Cellular Therapy With Human Autologous Adipose-Derived Adult Stem Cells for Advanced Keratoconus [J].
Alio del Barrio, Jorge L. ;
El Zarif, Mona ;
de Miguel, Maria P. ;
Azaar, Albert ;
Makdissy, Norman ;
Harb, Walid ;
El Achkar, Ibrahim ;
Arnalich-Montiel, Francisco ;
Alio, Jorge L. .
CORNEA, 2017, 36 (08) :952-960
[7]   Acellular human corneal matrix sheets seeded with human adipose-derived mesenchymal stem cells integrate functionally in an experimental animal model [J].
Alio del Barrio, Jorge L. ;
Chiesa, Massimo ;
Garagorri, Nerea ;
Garcia-Urquia, Nerea ;
Fernandez-Delgado, Jorge ;
Bataille, Laurent ;
Rodriguez, Alejandra ;
Arnalich-Montiel, Francisco ;
Zarnowski, Tomasz ;
Alvarez de Toledo, Juan P. ;
Alio, Jorge L. ;
De Miguel, Maria P. .
EXPERIMENTAL EYE RESEARCH, 2015, 132 :91-100
[8]   3D Bioprinting of cardiac tissue and cardiac stem cell therapy [J].
Alonzo, Matthew ;
Anilkumar, Shweta ;
Roman, Brian ;
Tasnim, Nishat ;
Joddar, Binata .
TRANSLATIONAL RESEARCH, 2019, 211 :64-83
[9]   3D-printed microfluidic devices [J].
Amin, Reza ;
Knowlton, Stephanie ;
Hart, Alexander ;
Yenilmez, Bekir ;
Ghaderinezhad, Fariba ;
Katebifar, Sara ;
Messina, Michael ;
Khademhosseini, Ali ;
Tasoglu, Savas .
BIOFABRICATION, 2016, 8 (02)
[10]   Design and 3D Printing of Scaffolds and Tissues [J].
An, Jia ;
Teoh, Joanne Ee Mei ;
Suntornnond, Ratima ;
Chua, Chee Kai .
ENGINEERING, 2015, 1 (02) :261-268