Design and Packaging of a Compact Entangled-Photon Source for Space Quantum Key Distribution

被引:0
作者
Bremner, D. [1 ]
Lee, S. T. [1 ]
Dorward, W. [1 ]
Robertson, S. [1 ]
Caspani, L. [2 ,3 ]
Sorensen, S. [2 ]
McKnight, L. [2 ]
机构
[1] Optocap Ltd, 5 Bain Sq,Kirkton Campus, Livingston EH54 7DQ, Scotland
[2] Fraunhofer Ctr Appl Photon, TIC, Level 5,99 George St, Glasgow G1 1RD, Lanark, Scotland
[3] Univ Strathclyde, Technol & Innovat Ctr, Dept Phys, Inst Photon, 99 George St, Glasgow G1 1RD, Lanark, Scotland
来源
SOLID STATE LASERS XXVIII: TECHNOLOGY AND DEVICES | 2019年 / 10896卷
关键词
Quantum Key Distribution; QKD; Entangled-Photon Source; space-qualified; telecoms packaging; ENHANCEMENT;
D O I
10.1117/12.2513290
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum Key Distribution (QKD) directly exploits the quantum phenomenon of entanglement to allow the secure sharing of a cryptographic key for information encoding. The current generation of QKD devices typically operate over dedicated and expensive private 'dark fiber' networks, where they are limited in transmission range to 200-300 km due to the lack of quantum repeaters. This paper is concerned with an alternative approach that can lift this range limit by exploiting QKD over free-space links between satellites. Typically, commercial QKD systems rely on phase encoding of information on single photons, and more recently on continuously variable schemes with more powerful lasers. However, these protocols are not suitable for communications through atmosphere. On the other hand, QKD by polarization-entanglement holds great promise for satellite-based QKD encoded communications links if the entangled photon source can be packaged in a compact, robust and commercially-viable form. This paper will describe the development and packaging of an entangled-photon source utilizing space-qualified telecoms packaging techniques, resulting in a compact device that targets satellite deployment. The key design choices that impact performance in a space environment will be discussed and the results of device characterization in the laboratory environment will be shared.
引用
收藏
页数:8
相关论文
共 50 条
[41]   Quantum key distribution scheme based on dense encoding in entangled states [J].
Zhang, XL ;
Zhang, YX ;
Gao, KL .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2005, 43 (04) :627-630
[42]   Quantum Key Distribution Scheme Based on Dense Encoding in Entangled States [J].
ZHANG XiaoLong ;
ZHANG YueXia ;
GAO KeLin State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics the Chinese Academy of Sciences Wuhan China Center for Cold Atom Physics the Chinese Academy of Sciences Wuhan China .
Communications in Theoretical Physics, 2005, 43 (04) :627-630
[43]   Quantum Key Distribution Over Free Space [J].
Beutel, Fabian ;
Roediger, Jasper ;
Perlot, Nicolas ;
Freund, Ronald ;
Benson, Oliver .
QUANTUM NANO-PHOTONICS, 2018, :357-359
[44]   Space-to-Ground Quantum Key Distribution [J].
Scheidl, T. ;
Handsteiner, J. ;
Rauch, D. ;
Ursin, R. .
INTERNATIONAL CONFERENCE ON SPACE OPTICS-ICSO 2018, 2018, 11180
[45]   Scheduling of space to ground quantum key distribution [J].
Mateusz Polnik ;
Luca Mazzarella ;
Marilena Di Carlo ;
Daniel KL Oi ;
Annalisa Riccardi ;
Ashwin Arulselvan .
EPJ Quantum Technology, 2020, 7
[46]   Scheduling of space to ground quantum key distribution [J].
Polnik, Mateusz ;
Mazzarella, Luca ;
Di Carlo, Marilena ;
Oi, Daniel K. L. ;
Riccardi, Annalisa ;
Arulselvan, Ashwin .
EPJ QUANTUM TECHNOLOGY, 2020, 7 (01)
[47]   Free-space quantum key distribution [J].
Garcia-Martinez, M. J. ;
Soto, D. ;
Denisenko, N. ;
Fernandez, V. .
OPTICA PURA Y APLICADA, 2011, 44 (02) :233-239
[48]   Practical non-orthogonal decoy state quantum key distribution with heralded single photon source [J].
米景隆 ;
王发强 ;
林青群 ;
梁瑞生 .
Chinese Physics B, 2008, 17 (04) :1178-1183
[49]   Practical non-orthogonal decoy state quantum key distribution with heralded single photon source [J].
Mi Jing-Long ;
Wang Fa-Qiang ;
Lin Qing-Qun ;
Liang Rui-Sheng .
CHINESE PHYSICS B, 2008, 17 (04) :1178-1183
[50]   State preparation error tolerant quantum key distribution protocol based on heralded single photon source [J].
Ma Xiao ;
Sun Ming-Shuo ;
Liu Jing-Yang ;
Ding Hua-Jian ;
Wang Qin .
ACTA PHYSICA SINICA, 2022, 71 (03)