Nitrogen-Doped Graphene and Twisted Bilayer Graphene via Hyperthermal Ion Implantation with Depth Control

被引:68
作者
Cress, Cory D. [1 ]
Schmucker, Scott W. [2 ]
Friedman, Adam L. [3 ]
Dev, Pratibha [2 ,4 ]
Culbertson, James C. [1 ]
Lyding, Joseph W. [5 ,6 ]
Robinson, Jeremy T. [1 ]
机构
[1] US Navy, Res Lab, Elect Sci & Technol Div, Washington, DC 20375 USA
[2] US Navy, Res Lab, Natl Res Council, Washington, DC 20375 USA
[3] US Navy, Res Lab, Mat Sci & Technol Div, Washington, DC 20375 USA
[4] Howard Univ, Dept Phys & Astron, Washington, DC 20059 USA
[5] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[6] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
graphene; hyperthermal ion implantation (HyTII); nitrogen doping N-graphene; twisted bilayer graphene (TBG); Raman; SCANNING TUNNELING MICROSCOPE; DER-WAALS SOLIDS; MONOLAYER GRAPHENE; ELECTRONIC-STRUCTURE; INDUCED DEFECTS; ENERGY; TRANSPORT; APPROXIMATION; SEGREGATION; IRRADIATION;
D O I
10.1021/acsnano.6b00252
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We investigate hyperthermal ion implantation (HyTII) as a means for substitutionally doping layered materials such as graphene. In particular, this systematic study characterizes the efficacy of substitutional N-doping of graphene using HyTII over an N+ energy range of 25-100 eV. Scanning tunneling microscopy results establish the incorporation of N substituents into the graphene lattice during HyTII processing. We illustrate the differences in evolution of the characteristic Raman peaks following incremental doses of N+. We use the ratios of the integrated D and D' peaks, I(D)/I(D') to assess the N+ energy-dependent doping efficacy, which shows a strong correlation with previously reported molecular dynamics (MD) simulation results and a peak doping efficiency regime ranging between approximately 30 and 50 eV. We also demonstrate the inherent monolayer depth control of the HyTII process, thereby establishing a unique advantage over other less-specific methods for doping. We achieve this by implementing twisted bilayer graphene (TBG), with one layer of isotopically enriched C-13 and one layer of natural C-12 graphene, and modify only the top layer of the TBG sample. By assessing the effects of N-HyTII processing, we uncover dose-dependent shifts in the transfer characteristics consistent with electron doping and we find dose-dependent electronic localization that manifests in low-temperature magnetotransport measurements.
引用
收藏
页码:3714 / 3722
页数:9
相关论文
共 53 条
[1]   A self-consistent theory for graphene transport [J].
Adam, Shaffique ;
Hwang, E. H. ;
Galitski, V. M. ;
Das Sarma, S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) :18392-18397
[2]   Atomistic simulations of the implantation of low-energy boron and nitrogen ions into graphene [J].
Ahlgren, E. H. ;
Kotakoski, J. ;
Krasheninnikov, A. V. .
PHYSICAL REVIEW B, 2011, 83 (11)
[3]   Ion Implantation of Graphene-Toward IC Compatible Technologies [J].
Bangert, U. ;
Pierce, W. ;
Kepaptsoglou, D. M. ;
Ramasse, Q. ;
Zan, R. ;
Gass, M. H. ;
Van den Berg, J. A. ;
Boothroyd, C. B. ;
Amani, J. ;
Hofsaess, H. .
NANO LETTERS, 2013, 13 (10) :4902-4907
[4]   Correlation between structure and electrical transport in ion-irradiated graphene grown on Cu foils [J].
Buchowicz, Grant ;
Stone, Peter R. ;
Robinson, Jeremy T. ;
Cress, Cory D. ;
Beeman, Jeffrey W. ;
Dubon, Oscar D. .
APPLIED PHYSICS LETTERS, 2011, 98 (03)
[5]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[6]   Theory of the Raman spectrum of rotated double-layer graphene [J].
Coh, Sinisa ;
Tan, Liang Z. ;
Louie, Steven G. ;
Cohen, Marvin L. .
PHYSICAL REVIEW B, 2013, 88 (16)
[7]   Nanoscale Transistors-Just Around the Gate? [J].
Cress, Cory D. ;
Datta, Suman .
SCIENCE, 2013, 341 (6142) :140-141
[8]   Total Ionizing Dose Induced Charge Carrier Scattering in Graphene Devices [J].
Cress, Cory D. ;
Champlain, James G. ;
Esqueda, Ivan S. ;
Robinson, Jeremy T. ;
Friedman, Adam L. ;
McMorrow, Julian J. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2012, 59 (06) :3045-3053
[9]   Low-Energy Ionic Collisions at Molecular Solids [J].
Cyriac, Jobin ;
Pradeep, T. ;
Kang, H. ;
Souda, R. ;
Cooks, R. G. .
CHEMICAL REVIEWS, 2012, 112 (10) :5356-5411
[10]   Electronic transport in two-dimensional graphene [J].
Das Sarma, S. ;
Adam, Shaffique ;
Hwang, E. H. ;
Rossi, Enrico .
REVIEWS OF MODERN PHYSICS, 2011, 83 (02) :407-470