Geometric properties and sections for certain subclasses of harmonic mappings

被引:10
作者
Liu, Ming-Sheng [1 ]
Yang, Li-Mei [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2019年 / 190卷 / 02期
关键词
Harmonic mapping; Coefficient bound; Growth theorem; Partial sum or section; Harmonic convolution; STARLIKE;
D O I
10.1007/s00605-018-1240-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G(H)(k)(alpha; r) denote the subclasses of normalized harmonic mappings f = h+g in the unit disk D satisfying the condition Re in where and alpha >= 0. In this paper, we first provide the sharp coefficient estimates and the sharp growth theorems for harmonic mappings in the class G(H)(k)(alpha; 1). Next, we derive the geometric properties of harmonic mappings in G(H)(1)(alpha; 1). Then we study several properties of the sections of f is an element of G(H)k(alpha; 1). Finally, we show that if f is an element of P-H(0) (alpha) and F is an element of G(H)(1)(beta; 1), then the harmonic convolution f * F is univalent and close-to-convex harmonic function in the unit disk for alpha is an element of (1/2, 1), beta > 0.
引用
收藏
页码:353 / 387
页数:35
相关论文
共 18 条
[1]   Harmonic Maps and Ideal Fluid Flows [J].
Aleman, A. ;
Constantin, A. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 204 (02) :479-513
[2]  
Avci Y., 1990, Ann. Uni. Mariae Curie-Sklodowska Sect. A, V44, P1
[3]  
CHICHRA PN, 1977, P AM MATH SOC, V62, P37
[4]  
CLUNIE J, 1984, ANN ACAD SCI FENN-M, V9, P3
[5]   A harmonic maps approach to fluid flows [J].
Constantin, Olivia ;
Martin, Maria J. .
MATHEMATISCHE ANNALEN, 2017, 369 (1-2) :1-16
[6]  
Duren P.L., 1983, GRUNDLEHREN MATH WIS
[7]  
Ghosh N., 2016, MATH SUB CLASS
[8]   Radius of close-to-convexity and fully starlikeness of harmonic mappings [J].
Kalaj, David ;
Ponnusamy, Saminathan ;
Vuorinen, Matti .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2014, 59 (04) :539-552
[9]  
Lewy H., 1936, B AM MATH SOC, V42, P689
[10]   Injectivity of sections of convex harmonic mappings and convolution theorems [J].
Li, Liulan ;
Ponnusamy, Saminathan .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2016, 66 (02) :331-350