Regularity of the free boundary for the obstacle problem for the fractional Laplacian with drift

被引:19
作者
Garofalo, Nicola [1 ]
Petrosyan, Arshak [2 ]
Pop, Camelia A. [3 ,5 ]
Garcia, Mariana Smit Vega [4 ]
机构
[1] Univ Padua, DICEA, Via Trieste 63, I-35131 Padua, Italy
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[3] Univ Minnesota, Sch Math, Vincent Hall,206 Church St SE, Minneapolis, MN 55455 USA
[4] Univ Duisburg Essen, Fak Math, D-45117 Essen, Germany
[5] Inst Math & Its Applicat, Lind Hall,207 Church St SE, Minneapolis, MN 55455 USA
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2017年 / 34卷 / 03期
关键词
Obstacle problem; Fractional Laplacian with drift; Free boundary regularity; Monotonicity formulas; Epiperimetric inequality; Symmetric stable process; TRACES;
D O I
10.1016/j.anihpc.2016.03.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the C1+gamma-Holder regularity of the regular free boundary in the stationary obstacle problem defined by the fractional Laplace operator with drift in the subcritical regime. Our method of the proof consists in proving a new monotonicity formula and an epiperimetric inequality. Both tools generalizes the original ideas of G. Weiss in [15] for the classical obstacle problem to the framework of fractional powers of the Laplace operator with drift. Our study continues the earlier research [12], where two of us established the optimal interior regularity of solutions. (C) 2016 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:533 / 570
页数:38
相关论文
共 50 条
[41]   On the A-obstacle problem and the Hausdorff measure of its free boundary [J].
S. Challal ;
A. Lyaghfouri ;
J. F. Rodrigues .
Annali di Matematica Pura ed Applicata, 2012, 191 :113-165
[42]   On the A-obstacle problem and the Hausdorff measure of its free boundary [J].
Challal, S. ;
Lyaghfouri, A. ;
Rodrigues, J. F. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2012, 191 (01) :113-165
[43]   Boundary regularity for p-harmonic functions and solutions of the obstacle problem on metric spaces [J].
Bjorn, Anders ;
Bjorn, Jana .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2006, 58 (04) :1211-1232
[44]   The fractional unstable obstacle problem [J].
Allen, Mark ;
Garcia, Mariana Smit Vega .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 193
[45]   Fractional optimal maximization problem and the unstable fractional obstacle problem [J].
Bonder, Julian Fernandez ;
Cheng, Zhiwei ;
Mikayelyan, Hayk .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 495 (01)
[46]   Optimal control for the conformal Laplacian obstacle problem [J].
Ndiaye, Cheikh Birahim .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 535 (02)
[47]   Regularity results for segregated configurations involving fractional Laplacian [J].
Tortone, Giorgio ;
Zilio, Alessandro .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 193
[48]   Regularity of Lipschitz free boundaries for a p(x)-Laplacian problem with right hand side [J].
Ferrari, Fausto ;
Lederman, Claudia .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 171 :26-74
[49]   THE REGULAR FREE BOUNDARY IN THE THIN OBSTACLE PROBLEM FOR DEGENERATE PARABOLIC EQUATIONS [J].
Banerjee, A. ;
Danielli, D. ;
Garofalo, N. ;
Petrosyan, A. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2021, 32 (03) :449-480
[50]   Regularity of the free boundary for a semilinear vector-valued minimization problem ☆ [J].
Du, Lili ;
Zhou, Yi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 430