Fault-tolerant edge metric dimension of certain families of graphs

被引:19
|
作者
Liu, Xiaogang [1 ]
Ahsan, Muhammad [2 ]
Zahid, Zohaib [2 ]
Ren, Shuili [1 ]
机构
[1] Xijing Univ, Sch Sci, Xian 710123, Shaanxi, Peoples R China
[2] Univ Management & Technol, Dept Math, Lahore, Pakistan
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 02期
关键词
fault-tolerant edge metric dimension; edge metric generator; cycle with chord graphs; tadpole graphs; kayak paddle graphs; RESOLVABILITY;
D O I
10.3934/math.2021069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let W-E = {w(1), w(2)... w(k)} be an ordered set of vertices of graph G and let e be an edge of G. Suppose d(x, e) denotes distance between edge e and vertex x of G, defined as d(e, x) = d(x, e) = min {d(x, a), d(x, b)}, where e = ab. A vertex x distinguishes two edges e(1) and e(2), if d(e(1), x), not equal d(e(2), x). The representation r(e vertical bar W-E) of e with respect to W-E is the k-tuple (d(e, w(1)), d(e, w(2)),..., d(e, w(k))). If distinct edges of G have distinct representation with respect to W-E, then W-E is called edge metric generator for G. An edge metric generator of minimum cardinality is an edge metric basis for G, and its cardinality is called edge metric dimension of G, denoted by edim(G). In this paper, we initiate the study of fault-tolerant edge metric dimension. Let (sic)(E) be edge metric generator of graph G, then (sic)(E) is called fault-tolerant edge metric generator of G if (sic)(E) \ {v} is also an edge metric generator of graph G for every v is an element of(sic)(E). A fault-tolerant edge metric generator of minimum cardinality is a fault-tolerant edge metric basis for graph G, and its cardinality is called fault-tolerant edge metric dimension of G. We also computed the fault-tolerant edge metric dimension of path, cycle, complete graph, cycle with chord graph, tadpole graph and kayak paddle graph.
引用
收藏
页码:1140 / 1152
页数:13
相关论文
共 50 条
  • [41] Fault-tolerant graphs for tori
    Yamada, T
    Ueno, S
    SECOND INTERNATIONAL SYMPOSIUM ON PARALLEL ARCHITECTURES, ALGORITHMS, AND NETWORKS (I-SPAN '96), PROCEEDINGS, 1996, : 408 - 414
  • [42] Fault-tolerant graphs for tori
    Yamada, T
    Ueno, S
    NETWORKS, 1998, 32 (03) : 181 - 188
  • [43] On Some families of Path-related graphs with their edge metric dimension
    Li, Lianglin
    Bao, Shu
    Raza, Hassan
    EXAMPLES AND COUNTEREXAMPLES, 2024, 6
  • [44] Realizability of Fault-Tolerant Graphs
    Hong, Yanmei
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 (02) : 619 - 631
  • [45] Optimal fault-tolerant Hamiltonicity of star graphs with conditional edge faults
    Hsieh, Sun-Yuan
    Wu, Chang-De
    JOURNAL OF SUPERCOMPUTING, 2009, 49 (03): : 354 - 372
  • [46] Optimal fault-tolerant Hamiltonicity of star graphs with conditional edge faults
    Sun-Yuan Hsieh
    Chang-De Wu
    The Journal of Supercomputing, 2009, 49 : 354 - 372
  • [47] Graphs with the edge metric dimension smaller than the metric dimension
    Knor, Martin
    Majstorovic, Snjezana
    Toshi, Aoden Teo Masa
    Skrekovski, Riste
    Yero, Ismael G.
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 401
  • [48] On the Families of Graphs With Unbounded Metric Dimension
    Pan, Heng
    Ali, Murtaza
    Ali, Gohar
    Rahim, Muhammad Tariq
    Yang, Xiaopeng
    IEEE ACCESS, 2019, 7 : 165060 - 165064
  • [49] GRAPHS OF ORDER n WITH FAULT-TOLERANT PARTITION DIMENSION n-1
    Javaid, Imran
    Salman, Muhammad
    Chaudhry, Muhammad Anwar
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2014, 76 (03): : 159 - 168
  • [50] On Metric Dimension and Fault Tolerant Metric Dimension of Some Chemical Structures
    Nadeem, Muhammad Faisal
    Shabbir, Ayesha
    Azeem, Muhammad
    POLYCYCLIC AROMATIC COMPOUNDS, 2022, 42 (10) : 6975 - 6987