Fault-tolerant edge metric dimension of certain families of graphs

被引:19
|
作者
Liu, Xiaogang [1 ]
Ahsan, Muhammad [2 ]
Zahid, Zohaib [2 ]
Ren, Shuili [1 ]
机构
[1] Xijing Univ, Sch Sci, Xian 710123, Shaanxi, Peoples R China
[2] Univ Management & Technol, Dept Math, Lahore, Pakistan
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 02期
关键词
fault-tolerant edge metric dimension; edge metric generator; cycle with chord graphs; tadpole graphs; kayak paddle graphs; RESOLVABILITY;
D O I
10.3934/math.2021069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let W-E = {w(1), w(2)... w(k)} be an ordered set of vertices of graph G and let e be an edge of G. Suppose d(x, e) denotes distance between edge e and vertex x of G, defined as d(e, x) = d(x, e) = min {d(x, a), d(x, b)}, where e = ab. A vertex x distinguishes two edges e(1) and e(2), if d(e(1), x), not equal d(e(2), x). The representation r(e vertical bar W-E) of e with respect to W-E is the k-tuple (d(e, w(1)), d(e, w(2)),..., d(e, w(k))). If distinct edges of G have distinct representation with respect to W-E, then W-E is called edge metric generator for G. An edge metric generator of minimum cardinality is an edge metric basis for G, and its cardinality is called edge metric dimension of G, denoted by edim(G). In this paper, we initiate the study of fault-tolerant edge metric dimension. Let (sic)(E) be edge metric generator of graph G, then (sic)(E) is called fault-tolerant edge metric generator of G if (sic)(E) \ {v} is also an edge metric generator of graph G for every v is an element of(sic)(E). A fault-tolerant edge metric generator of minimum cardinality is a fault-tolerant edge metric basis for graph G, and its cardinality is called fault-tolerant edge metric dimension of G. We also computed the fault-tolerant edge metric dimension of path, cycle, complete graph, cycle with chord graph, tadpole graph and kayak paddle graph.
引用
收藏
页码:1140 / 1152
页数:13
相关论文
共 50 条
  • [21] Twin vertices in fault-tolerant metric sets and fault-tolerant metric dimension of multistage interconnection networks
    Prabhu, S.
    Manimozhi, V.
    Arulperumjothi, M.
    Klavžar, Sandi
    Applied Mathematics and Computation, 2022, 420
  • [22] Fault Tolerant Metric Dimension of Arithmetic Graphs
    Sardar, Muhammad Shoaib
    Rasheed, Komal
    Cancan, Murat
    Farahani, Mohammad Reza
    Alaeiyan, Mehdi
    Patil, Shobha V.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2024, 122 : 13 - 32
  • [23] On fault-tolerant metric dimension of supramolecular networks
    Siddiqui, Hafiz Muhammad Afzal
    Mazhar, Khadija
    Siddiqui, Muhammad Kamran
    Nadeem, Muhammad Faisal
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2025, 17 (01)
  • [24] On the fault-tolerant metric dimension of convex polytopes
    Raza, Hassan
    Hayat, Sakander
    Pan, Xiang-Feng
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 339 : 172 - 185
  • [25] Fault-Tolerant Metric Dimension of Interconnection Networks
    Hayat, Sakander
    Khan, Asad
    Malik, Muhammad Yasir Hayat
    Imran, Muhammad
    Siddiqui, Muhammad Kamran
    IEEE ACCESS, 2020, 8 : 145435 - 145445
  • [26] Fault-tolerant metric dimension of circulant graphs Cn(1,2,3)
    Basak, Mithun
    Saha, Laxman
    Das, Gour Kanta
    Tiwary, Kalishankar
    THEORETICAL COMPUTER SCIENCE, 2020, 817 (817) : 66 - 79
  • [27] Computing Metric Dimension of Certain Families of Toeplitz Graphs
    Liu, Jia-Bao
    Nadeem, Muhammad Faisal
    Siddiqui, Hafiz Muhammad Afzal
    Nazir, Wajiha
    IEEE ACCESS, 2019, 7 (126734-126741) : 126734 - 126741
  • [28] ALL METRIC BASES AND FAULT-TOLERANT METRIC DIMENSION FOR SQUARE OF GRID
    Saha, Laxman
    Basak, Mithun
    Tiwary, Kalishankar
    OPUSCULA MATHEMATICA, 2022, 42 (01) : 93 - 111
  • [29] Metric and fault-tolerant metric dimension for GeSbTe superlattice chemical structure
    Liu Liqin
    Shahzad, Khurram
    Rauf, Abdul
    Tchier, Fairouz
    Aslam, Adnan
    PLOS ONE, 2023, 18 (11):
  • [30] Redefining fractal cubic networks and determining their metric dimension and fault-tolerant metric dimension
    Arulperumjothi, M.
    Klavzar, Sandi
    Prabhu, S.
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 452