Fault-tolerant edge metric dimension of certain families of graphs

被引:19
作者
Liu, Xiaogang [1 ]
Ahsan, Muhammad [2 ]
Zahid, Zohaib [2 ]
Ren, Shuili [1 ]
机构
[1] Xijing Univ, Sch Sci, Xian 710123, Shaanxi, Peoples R China
[2] Univ Management & Technol, Dept Math, Lahore, Pakistan
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 02期
关键词
fault-tolerant edge metric dimension; edge metric generator; cycle with chord graphs; tadpole graphs; kayak paddle graphs; RESOLVABILITY;
D O I
10.3934/math.2021069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let W-E = {w(1), w(2)... w(k)} be an ordered set of vertices of graph G and let e be an edge of G. Suppose d(x, e) denotes distance between edge e and vertex x of G, defined as d(e, x) = d(x, e) = min {d(x, a), d(x, b)}, where e = ab. A vertex x distinguishes two edges e(1) and e(2), if d(e(1), x), not equal d(e(2), x). The representation r(e vertical bar W-E) of e with respect to W-E is the k-tuple (d(e, w(1)), d(e, w(2)),..., d(e, w(k))). If distinct edges of G have distinct representation with respect to W-E, then W-E is called edge metric generator for G. An edge metric generator of minimum cardinality is an edge metric basis for G, and its cardinality is called edge metric dimension of G, denoted by edim(G). In this paper, we initiate the study of fault-tolerant edge metric dimension. Let (sic)(E) be edge metric generator of graph G, then (sic)(E) is called fault-tolerant edge metric generator of G if (sic)(E) \ {v} is also an edge metric generator of graph G for every v is an element of(sic)(E). A fault-tolerant edge metric generator of minimum cardinality is a fault-tolerant edge metric basis for graph G, and its cardinality is called fault-tolerant edge metric dimension of G. We also computed the fault-tolerant edge metric dimension of path, cycle, complete graph, cycle with chord graph, tadpole graph and kayak paddle graph.
引用
收藏
页码:1140 / 1152
页数:13
相关论文
共 29 条
  • [1] Ahsan M., UTILITAS MATH
  • [2] Computing the edge metric dimension of convex polytopes related graphs
    Ahsan, Muhammad
    Zahid, Zohaib
    Zafar, Sohail
    Rafiq, Arif
    Sindhu, Muhammad Sarwar
    Umar, Muhammad
    [J]. JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2021, 22 (02): : 174 - 188
  • [3] Ali U., 2020, OPEN J MATH SCI, V4, P48, DOI [10.30538/oms2020.0093, DOI 10.30538/OMS2020.0093]
  • [4] Basak M., 2019, THEOR COMPUT SCI
  • [5] On the metric dimension of cartesian products of graphs
    Caceres, Jose
    Hernando, Carmen
    Mora, Merce
    Pelayo, Ignacio M.
    Puertas, Maria L.
    Seara, Carlos
    Wood, David R.
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (02) : 423 - 441
  • [6] Resolvability in graphs and the metric dimension of a graph
    Chartrand, G
    Eroh, L
    Johnson, MA
    Oellermann, OR
    [J]. DISCRETE APPLIED MATHEMATICS, 2000, 105 (1-3) : 99 - 113
  • [7] Resolvability and the upper dimension of graphs
    Chartrand, G
    Poisson, C
    Zhang, P
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 39 (12) : 19 - 28
  • [8] Gao W., 2017, OPEN J MATH ANAL, V1, P13, DOI [DOI 10.30538/psrp-oma2017.0002, 10.30538/psrp-oma2017.0002, DOI 10.30538/PSRP-OMA2017.0002]
  • [9] Hernando C., 2008, Lecture Note Series, V5, P81
  • [10] Imran M, 2012, UTILITAS MATHEMATICA, V88, P43