Fault-tolerant edge metric dimension of certain families of graphs

被引:19
|
作者
Liu, Xiaogang [1 ]
Ahsan, Muhammad [2 ]
Zahid, Zohaib [2 ]
Ren, Shuili [1 ]
机构
[1] Xijing Univ, Sch Sci, Xian 710123, Shaanxi, Peoples R China
[2] Univ Management & Technol, Dept Math, Lahore, Pakistan
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 02期
关键词
fault-tolerant edge metric dimension; edge metric generator; cycle with chord graphs; tadpole graphs; kayak paddle graphs; RESOLVABILITY;
D O I
10.3934/math.2021069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let W-E = {w(1), w(2)... w(k)} be an ordered set of vertices of graph G and let e be an edge of G. Suppose d(x, e) denotes distance between edge e and vertex x of G, defined as d(e, x) = d(x, e) = min {d(x, a), d(x, b)}, where e = ab. A vertex x distinguishes two edges e(1) and e(2), if d(e(1), x), not equal d(e(2), x). The representation r(e vertical bar W-E) of e with respect to W-E is the k-tuple (d(e, w(1)), d(e, w(2)),..., d(e, w(k))). If distinct edges of G have distinct representation with respect to W-E, then W-E is called edge metric generator for G. An edge metric generator of minimum cardinality is an edge metric basis for G, and its cardinality is called edge metric dimension of G, denoted by edim(G). In this paper, we initiate the study of fault-tolerant edge metric dimension. Let (sic)(E) be edge metric generator of graph G, then (sic)(E) is called fault-tolerant edge metric generator of G if (sic)(E) \ {v} is also an edge metric generator of graph G for every v is an element of(sic)(E). A fault-tolerant edge metric generator of minimum cardinality is a fault-tolerant edge metric basis for graph G, and its cardinality is called fault-tolerant edge metric dimension of G. We also computed the fault-tolerant edge metric dimension of path, cycle, complete graph, cycle with chord graph, tadpole graph and kayak paddle graph.
引用
收藏
页码:1140 / 1152
页数:13
相关论文
共 50 条
  • [1] Fault-tolerant strong metric dimension of graphs
    Krishnan, Sathish
    Rajan, Bharati
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (07)
  • [2] Fault-Tolerant Metric Dimension of Circulant Graphs
    Saha, Laxman
    Lama, Rupen
    Tiwary, Kalishankar
    Das, Kinkar Chandra
    Shang, Yilun
    MATHEMATICS, 2022, 10 (01)
  • [3] Fault-Tolerant Metric and Partition Dimension of Graphs
    Chaudhry, Muhammad Anwar
    Javaid, Imran
    Salman, Muhammad
    UTILITAS MATHEMATICA, 2010, 83 : 187 - 199
  • [4] FAULT-TOLERANT METRIC DIMENSION OF CIRCULANT GRAPHS
    Seyedi, Narjes
    Maimani, Hamid Reza
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2019, 34 (04): : 781 - 788
  • [5] Edge Metric and Fault-Tolerant Edge Metric Dimension of Hollow Coronoid
    Koam, Ali N. A.
    Ahmad, Ali
    Ibrahim, Muhammad
    Azeem, Muhammad
    MATHEMATICS, 2021, 9 (12)
  • [6] On the fault-tolerant metric dimension of certain interconnection networks
    Hassan Raza
    Sakander Hayat
    Xiang-Feng Pan
    Journal of Applied Mathematics and Computing, 2019, 60 : 517 - 535
  • [7] Computation of the Fault-Tolerant Metric Dimension of Certain Networks
    Bashir, Humera
    Zahid, Zohaib
    Ojiema, Michael Onyango
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [8] On the fault-tolerant metric dimension of certain interconnection networks
    Raza, Hassan
    Hayat, Sakander
    Pan, Xiang-Feng
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2019, 60 (1-2) : 517 - 535
  • [9] Computing Fault-Tolerant Metric Dimension of Connected Graphs
    Ahmad, Uzma
    Ahmed, Sara
    Javaid, Muhammad
    Alam, Md Nur
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [10] FAULT-TOLERANT METRIC DIMENSION OF BARYCENTRIC SUBDIVISION OF CAYLEY GRAPHS
    Ahmad, Ali
    Asim, Muhammad a.
    Baca, Martin
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2024, 48 (03): : 433 - 439