Statistical solution and Liouville type theorem for the Klein-Gordon-Schrodinger equations

被引:51
作者
Zhao, Caidi [1 ]
Caraballo, Tomas [2 ]
Lukaszewicz, Grzegorz [3 ]
机构
[1] Wenzhou Univ, Dept Math, Wenzhou 325035, Zhejiang, Peoples R China
[2] Univ Seville, Dept Ecuac Diferenciales & Anal Numer, Fac Matemat, C Tarfia S-N, Seville 41012, Spain
[3] Univ Warsaw, Inst Appl Math & Mech, Banacha 2, PL-02097 Warsaw, Poland
关键词
Klein-Gordon-Schodinger equations; Statistical solution; Pullback attractor; Invariant measure; Liouville type theorem;
D O I
10.1016/j.jde.2021.01.039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, the authors investigate the system of Schrodinger and Klein-Gordon equations with Yukawa coupling. They first prove the existence of pullback attractor and construct a family of invariant Borel probability measures. Then they establish that this family of probability measures satisfies a Liouville type theorem and is indeed a statistical solution for the coupling equations. Further, they reveal that the invariant property of the statistical solution is a particular situation of the Liouville type theorem. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 32
页数:32
相关论文
共 36 条
[2]   Abstract framework for the theory of statistical solutions [J].
Bronzi, A. C. ;
Mondaini, C. F. ;
Rosa, R. M. S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (12) :8428-8484
[3]   ON THE CONVERGENCE OF STATISTICAL SOLUTIONS OF THE 3D NAVIER-STOKES-α MODEL AS α VANISHES [J].
Bronzi, Anne ;
Rosa, Ricardo .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (01) :19-49
[4]   TRAJECTORY STATISTICAL SOLUTIONS FOR THREE-DIMENSIONAL NAVIER-STOKES-LIKE SYSTEMS [J].
Bronzi, Anne C. ;
Mondaini, Cecilia F. ;
Rosa, Ricardo M. S. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (03) :1893-1921
[5]  
Caraballo T, 2008, DISCRETE CONT DYN-B, V10, P760
[6]   A non-autonomous strongly damped wave equation: Existence and continuity of the pullback attractor [J].
Caraballo, Tomas ;
Carvalho, Alexandre N. ;
Langa, Jose A. ;
Rivero, Felipe .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (06) :2272-2283
[7]   Invariant Measures for Dissipative Dynamical Systems: Abstract Results and Applications [J].
Chekroun, Mickael D. ;
Glatt-Holtz, Nathan E. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 316 (03) :723-761
[8]  
Claudia B., 2017, J MATH ANAL APPL, V455, P1234
[9]  
Foias C., 2001, NAVIER STOKES EQUATI, DOI DOI 10.1017/CBO9780511546754
[10]  
Foias C., 1976, ANN MAT PUR APPL, V111, P307, DOI 10.1007/BF02411822