Solitonic solutions for a variable-coefficient variant Boussinesq system in the long gravity waves

被引:12
作者
Meng, De-Xin [1 ,2 ]
Gao, Yi-Tian [1 ,2 ,3 ]
Gai, Xiao-Ling [1 ,2 ]
Wang, Lei [1 ,2 ]
Yu, Xin [1 ,2 ]
Sun, Zhi-Yuan [1 ,2 ]
Wang, Ming-Zhen [1 ,2 ]
Lue, Xing [4 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Minist Educ, Key Lab Fluid Mech, Beijing 100191, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, Natl Lab Computat Fluid Dynam, Beijing 100191, Peoples R China
[3] Beijing Univ Aeronaut & Astronaut, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
[4] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Lax pair; Variable-coefficient variant Boussinesq system; Nonlinear wave; Fluid dynamics; Solitonic solution; Darboux transformation; NONLINEAR SCHRODINGER-EQUATION; ION-ACOUSTIC-WAVES; SYMBOLIC-COMPUTATION; BACKLUND TRANSFORMATION; DARBOUX TRANSFORMATIONS; 1-SOLITON SOLUTION; MODEL; EVOLUTION; NEBULONS; DYNAMICS;
D O I
10.1016/j.amc.2009.07.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Variable-coefficient variant Boussinesq (VCVB) system is able to describe the nonlinear and dispersive long gravity waves traveling in two horizontal directions with varying depth. In this paper, with symbolic computation, a Lax pair associated with the VCVB system under some constraints for variable coefficients is derived, and based on the Lax pair, two sorts of basic Darboux transformations are presented. By applying the Darboux transformations, some solitonic solutions are obtained, with the relevant constraints given in the text. In addition, the VCVB system is transformed to a variable-coefficient Broer-Kaup system. Solitonic solutions and procedure of getting them could be helpful to solve the nonlinear and dispersive problems in fluid dynamics. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1744 / 1751
页数:8
相关论文
共 52 条
  • [1] Ablowitz M., 1991, Soliton, Nonlinear Evolution Equations and Inverse Scattering
  • [2] Symbolic calculation in chemistry: Selected examples
    Barnett, MP
    Capitani, JF
    von zur Gathen, J
    Gerhard, J
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2004, 100 (02) : 80 - 104
  • [3] 1-soliton solution of the K(m, n) equation with generalized evolution
    Biswas, Anjan
    [J]. PHYSICS LETTERS A, 2008, 372 (25) : 4601 - 4602
  • [4] Solitary waves of Boussinesq equation in a power law media
    Biswas, Anjan
    Milovic, Daniela
    Ranasinghe, Arjuna
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (11) : 3738 - 3742
  • [5] 1-Soliton solution of the B(m, n) equation with generalized evolution
    Biswas, Anjan
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (08) : 3226 - 3229
  • [6] Boussinesq J., 1872, J. Math. Pures Appl., V17, P55
  • [7] Boussinesq JV., 1871, C. R. Acad. Sci. Paris, V73, P256
  • [8] APPROXIMATE EQUATIONS FOR LONG WATER WAVES
    BROER, LJF
    [J]. APPLIED SCIENTIFIC RESEARCH, 1975, 31 (05): : 377 - 395
  • [9] Constantin P, 2001, FLUID MEC A, V59, P23
  • [10] Cook L.P., 1996, On Modelling Nonlinear Long Waves